scholarly journals Using single-cell sequencing technology to detect circulating tumor cells in solid tumors

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Jiasheng Xu ◽  
Kaili Liao ◽  
Xi Yang ◽  
Chengfeng Wu ◽  
Wei Wu ◽  
...  

AbstractCirculating tumor cells are tumor cells with high vitality and high metastatic potential that invade and shed into the peripheral blood from primary solid tumors or metastatic foci. Due to the heterogeneity of tumors, it is difficult for high-throughput sequencing analysis of tumor tissues to find the genomic characteristics of low-abundance tumor stem cells. Single-cell sequencing of circulating tumor cells avoids interference from tumor heterogeneity by comparing the differences between single-cell genomes, transcriptomes, and epigenetic groups among circulating tumor cells, primary and metastatic tumors, and metastatic lymph nodes in patients' peripheral blood, providing a new perspective for understanding the biological process of tumors. This article describes the identification, biological characteristics, and single-cell genome-wide variation in circulating tumor cells and summarizes the application of single-cell sequencing technology to tumor typing, metastasis analysis, progression detection, and adjuvant therapy.

Author(s):  
Mastan Mannarapu ◽  
Begum Dariya ◽  
Obul Reddy Bandapalli

AbstractPancreatic cancer (PC) is the third lethal disease for cancer-related mortalities globally. This is mainly because of the aggressive nature and heterogeneity of the disease that is diagnosed only in their advanced stages. Thus, it is challenging for researchers and clinicians to study the molecular mechanism involved in the development of this aggressive disease. The single-cell sequencing technology enables researchers to study each and every individual cell in a single tumor. It can be used to detect genome, transcriptome, and multi-omics of single cells. The current single-cell sequencing technology is now becoming an important tool for the biological analysis of cells, to find evolutionary relationship between multiple cells and unmask the heterogeneity present in the tumor cells. Moreover, its sensitivity nature is found progressive enabling to detect rare cancer cells, circulating tumor cells, metastatic cells, and analyze the intratumor heterogeneity. Furthermore, these single-cell sequencing technologies also promoted personalized treatment strategies and next-generation sequencing to predict the disease. In this review, we have focused on the applications of single-cell sequencing technology in identifying cancer-associated cells like cancer-associated fibroblast via detecting circulating tumor cells. We also included advanced technologies involved in single-cell sequencing and their advantages. The future research indeed brings the single-cell sequencing into the clinical arena and thus could be beneficial for diagnosis and therapy of PC patients.


2020 ◽  
Vol 21 (8) ◽  
pp. 576-584
Author(s):  
Tian Chen ◽  
Jiawei Li ◽  
Yichen Jia ◽  
Jiyan Wang ◽  
Ruirui Sang ◽  
...  

Variation and heterogeneity between cells are the basic characteristics of stem cells. Traditional sequencing analysis methods often cover up this difference. Single-cell sequencing technology refers to the technology of high-throughput sequencing analysis of genomes at the single-cell level. It can effectively analyze cell heterogeneity and identify a small number of cell populations. With the continuous progress of cell sorting, nucleic acid extraction and other technologies, single-cell sequencing technology has also made great progress. Encouraging new discoveries have been made in stem cell research, including pluripotent stem cells, tissue-specific stem cells and cancer stem cells. In this review, we discuss the latest progress and future prospects of single-cell sequencing technology in the field of stem cells.


2020 ◽  
Vol 3 (9) ◽  
pp. 6521-6528
Author(s):  
Rui Li ◽  
Zhiyi Gong ◽  
Kezhen Yi ◽  
Wei Li ◽  
Yichao Liu ◽  
...  

2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Zhe Dai ◽  
Xu-yu Gu ◽  
Shou-yan Xiang ◽  
Dan-dan Gong ◽  
Chang-feng Man ◽  
...  

Abstract Malignant tumor is a largely harmful disease worldwide. The cure rate of malignant tumors increases with the continuous discovery of anti-tumor drugs and the optimisation of chemotherapy options. However, drug resistance of tumor cells remains a massive obstacle in the treatment of anti-tumor drugs. The heterogeneity of malignant tumors makes studying it further difficult for us. In recent years, using single-cell sequencing technology to study and analyse circulating tumor cells can avoid the interference of tumor heterogeneity and provide a new perspective for us to understand tumor drug resistance.


Sign in / Sign up

Export Citation Format

Share Document