scholarly journals In vivo imaging of sterile microglial activation in rat brain after disrupting the blood-brain barrier with pulsed focused ultrasound: [18F]DPA-714 PET study

2019 ◽  
Vol 16 (1) ◽  
Author(s):  
Sanhita Sinharay ◽  
Tsang-Wei Tu ◽  
Zsofia I. Kovacs ◽  
William Schreiber-Stainthorp ◽  
Maggie Sundby ◽  
...  
2019 ◽  
Author(s):  
Megan C. Rich ◽  
Jennifer Sherwood ◽  
Aundrea F. Bartley ◽  
Quentin A. Whitsitt ◽  
W.R. Willoughby ◽  
...  

AbstractThere is an ongoing need for noninvasive tools to manipulate brain activity with molecular, spatial and temporal specificity. Here we have investigated the use of MRI-visible, albumin-based nanoclusters for noninvasive, localized and temporally specific drug delivery to the rat brain. We demonstrated that IV injected nanoclusters could be deposited into target brain regions via focused ultrasound facilitated blood brain barrier opening. We showed that nanocluster location could be confirmed in vivo with MRI. Additionally, following confirmation of nanocluster delivery, release of the nanocluster payload into brain tissue can be triggered by a second focused ultrasound treatment performed without circulating microbubbles. Release of glutamate from nanoclusters in vivo caused enhanced c-Fos expression, indicating that the loading capacity of the nanoclusters is sufficient to induce neuronal activation. This novel technique for noninvasive stereotactic drug delivery to the brain with temporal specificity could provide a new way to study brain circuits in vivo preclinically with high relevance for clinical translation.Graphical Abstract


NeuroImage ◽  
2010 ◽  
Vol 49 (1) ◽  
pp. 337-344 ◽  
Author(s):  
Ofer Prager ◽  
Yoash Chassidim ◽  
Chen Klein ◽  
Haviv Levi ◽  
Ilan Shelef ◽  
...  

NeuroImage ◽  
2013 ◽  
Vol 79 ◽  
pp. 288-294 ◽  
Author(s):  
Mathieu D. Santin ◽  
Thomas Debeir ◽  
S. Lori Bridal ◽  
Thomas Rooney ◽  
Marc Dhenain

2018 ◽  
Author(s):  
Elisa E. Konofagou

After cancer and heart disease, neurodegenerative diseases, such as Alzheimer's, Parkinson's, multiple sclerosis (MS), amythrophic lateral sclerosis (ALS), and neurological diseases take more lives each year than any other illness. Although great progress has been made in recent years toward understanding of central nervous system (CNS) diseases, few effective treatments and no cures are currently available. This is mainly because the blood-brain barrier (BBB) limits the delivery of the vast majority of systemically-administered drugs available to treat those diseases. The underlying hypothesis of this study is that delivery of therapeutic molecules is safe and effective through the blood-brain barrier (BBB) using Focused Ultrasound (FUS) in large animals in vivo. Our preliminary results have shown that the FUS technique can induce BBB opening entirely noninvasively, selectively and be monitored with MRI at sub-millimeter resolution in vivo. The specific aims are therefore to: 1) build a MRcompatible system for FUS targeting and monitoring in the MRI system; 2) test and demonstrate delivery of neurotrophic factors to the hippocampus and putamen of monkeys; 3) test and demonstrate delivery of inhibitors to the visual cortex of monkeys; and 4) assess the safety of the FUS method in monkeys.


Sign in / Sign up

Export Citation Format

Share Document