scholarly journals Differences in coreceptor specificity contribute to alternative tropism of HIV-1 subtype C for CD4+T-cell subsets, including stem cell memory T-cells

Retrovirology ◽  
2014 ◽  
Vol 11 (1) ◽  
Author(s):  
Kieran Cashin ◽  
Geza Paukovics ◽  
Martin R Jakobsen ◽  
Lars Østergaard ◽  
Melissa J Churchill ◽  
...  
2020 ◽  
Author(s):  
Anastassia Mikhailova ◽  
José Carlos Valle-Casuso ◽  
Annie David ◽  
Valérie Monceaux ◽  
Stevenn Volant ◽  
...  

ABSTRACTHIV-1 successfully establishes long-term infection in its target cells despite viral cytotoxic effects. We have recently shown that cell metabolism is an important factor driving CD4+ T-cell susceptibility to HIV-1 and the survival of infected cells. We show here that expression of anti-apoptotic clone 11 (AAC-11), an anti-apoptotic factor upregulated in many cancers, increased with progressive CD4+ T cell memory differentiation in association with the expression of cell cycle, activation and metabolism genes and correlated with susceptibility to HIV-1 infection. Synthetic peptides based on the LZ domain sequence of AAC-11, responsible for its interaction with molecular partners, were previously shown to be cytotoxic to cancer cells. Here we observed that these peptides also blocked HIV-1 infection by inducing cell death of HIV-1 susceptible primary CD4+ T-cells across all T-cell subsets. The peptides targeted metabolically active cells and had the greatest effect on effector and transitional CD4+ T cell memory subsets. Our results suggest that AAC-11 survival pathway is potentially involved in the survival of HIV-1 infectable cells and provide a proof of principle that some cellular characteristics can be targeted to eliminate the cells offering the best conditions to sustain HIV-1 replication.IMPORTANCEAlthough antiretroviral treatment efficiently blocks HIV multiplication, it cannot eliminate the cells already carrying integrated proviruses. In the search for a HIV cure the identification of new potential targets to selectively eliminate infected cells is of the outmost importance. We show here that peptides derived from the anti-apoptotic clone 11 (AAC-11), which expression levels correlated with susceptibility to HIV-1 infection of CD4+ T-cells, induced cytotoxicity in CD4+ T-cells showing the highest levels of activation and metabolic activity, conditions known to favor HIV-1 infection. Accordingly, CD4+ T-cells that survived the cytotoxic action of the AAC-11 peptides were resistant to HIV-1 replication. Our results identify a new potential molecular pathway to target HIV-1 infection.


Virology ◽  
2018 ◽  
Vol 516 ◽  
pp. 21-29 ◽  
Author(s):  
Mingce Zhang ◽  
Tanya O. Robinson ◽  
Alexandra Duverger ◽  
Olaf Kutsch ◽  
Sonya L. Heath ◽  
...  

2010 ◽  
Vol 184 (9) ◽  
pp. 4926-4935 ◽  
Author(s):  
Pholo Maenetje ◽  
Catherine Riou ◽  
Joseph P. Casazza ◽  
David Ambrozak ◽  
Brenna Hill ◽  
...  

2007 ◽  
Vol 19 (10) ◽  
pp. 1191-1199 ◽  
Author(s):  
T. Onoda ◽  
M. Rahman ◽  
H. Nara ◽  
A. Araki ◽  
K. Makabe ◽  
...  

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 720-720
Author(s):  
Ken-ichi Matsuoka ◽  
Corey Cutler ◽  
John Koreth ◽  
Joseph H Antin ◽  
Robert J Soiffer ◽  
...  

Abstract CD4+FoxP3+ Regulatory T cells (Treg) play a critical role in the maintenance of tolerance after allogeneic hematopoietic stem cell transplantation (HSCT). We previously demonstrated that patients with active chronic graft-versus-host disease (cGVHD) have a reduced frequency of Treg. However, the mechanisms responsible for inadequate Treg reconstitution in patients with cGVHD have not been characterized. We therefore examined phenotypic and functional characteristics of Treg in 16 patients 2–41 months (median 10 months) post-HSCT to elucidate these mechanisms. Treg were compared to conventional CD4+FoxP3-T cells (Tcon) within individual patient samples and to healthy donors. All patients received TBI-based myeloablative conditioning, peripheral blood stem cells from HLA-matched donors (12 MRD; 4 URD) and acute GVHD prophylaxis (11 tacrolimus and sirolimus; 5 tacrolimus and methotrexate). At the time of analysis, 9 patients had no chronic GVHD, 5 had active chronic GVHD (1 limited disease; 4 extensive disease) and 2 had inactive chronic GVHD. Total CD4 counts were relatively low after HSCT compared to healthy donors (median CD4 273/ul vs 756/ul). After HSCT, patient Treg exhibited a predominant CD45RA(−)CCR7(−) effector/memory phenotype. Expression of CD31 on CD45RA+ Tcon and Treg was used to identify cells within these subsets that were recent thymic emigrants (RTE). In patient samples, 16.5% of Tcon and 2.8% of Treg expressed CD31+CD45RA+. In healthy donors, 22.9% of Tcon and 5.4% of Treg were CD31+CD45RA+. The lower fraction of RTE within the Treg population after transplant suggests that Treg primarily reconstitute through peripheral proliferation rather than through thymic generation. The proliferative capacity of both Tcon and Treg was examined by evaluating expression of Ki-67 in these subsets. After transplant, Ki-67 expression was significantly higher in Treg (5.2%) than in Tcon (1.5%) (p<0.001). This was significantly higher in both populations compared to healthy donors where 2.5% of Treg (p<0.05) and 0.2% of Tcon (p<0.01) expressed Ki-67. In both patients and healthy donors, Ki-67 expression was found almost entirely in cells that were CD45RA-indicating that proliferation was primarily occurring within the memory subsets of Tcon and Treg. Increased expression of Ki-67 on Treg was associated with low CD4 T cell counts (p<0.001), but not with time after HSCT (p=0.21) and chronic GVHD status (p=0.35). Treg Ki-67 expression after HSCT showed a strong positive correlation with CD95 (FAS) expression (p<0.01), but this association was not present in Tcon post-HSCT or in Treg from healthy donors. To determine whether increased expression of CD95 results in apoptosis of Treg, we purified 4 different CD4+ T cell subsets by cell sorting (CD45RA+ Tcon, CD45RA− Tcon, CD45RA+ Treg and CD45RA− Treg) from healthy donors and HSCT patients. Purified cells were cultured with or without agonistic FAS antibody (anti-FAS) and apoptosis was measured using Annexin-V staining. Anti-FAS rapidly induced apoptosis of CD45RA− memory-like Treg from HSCT patients while all other Treg and Tcon subsets were relatively resistant to apoptosis. In summary, these results indicate that Treg reconstitution post-HSCT is characterized by high levels of peripheral proliferation, which appear to be driven primarily by persistent CD4 T lymphopenia. However, post-HSCT Treg are also highly sensitive to FAS-mediated apoptosis. This process does not affect the survival of other CD4 T cell subsets. In the absence of thymic generation of Treg from hematopoietic precursors, this dynamic process results in a relative deficiency of Treg post-HSCT. Our findings provide important information for developing strategies aimed at monitoring and modulating Treg to promote immune tolerance following HSCT.


2019 ◽  
Vol 93 (14) ◽  
Author(s):  
Jernej Pušnik ◽  
Michael A. Eller ◽  
Boonrat Tassaneetrithep ◽  
Bruce T. Schultz ◽  
Leigh Anne Eller ◽  
...  

ABSTRACTAcute HIV-1 infection is characterized by high viremia and massive depletion of CD4+T cells throughout all tissue compartments. During this time the latent viral reservoir is established but the dynamics of memory CD4+T cell subset development, their infectability and influence on disease progression during acute HIV-1 infection has not been carefully described. We therefore investigated the dynamics of CD4+T cell memory populations in the RV217 (ECHO) cohort during the acute phase of infection. Interestingly, while we found only small changes in central or effector memory compartments, we observed a profound expansion of stem cell-like memory CD4+T cells (SCM) (2.7-fold;P < 0.0001). Furthermore, we demonstrated that the HIV-1 integration and replication preferentially take place in highly differentiated CD4+T cells such as transitional memory (TM) and effector memory (EM) CD4+T cells, while naive and less mature memory cells prove to be more resistant. Despite the relatively low frequency of productively infected SCM, we suggest that their quiescent phenotype, increased susceptibility to HIV-1 integration compared to naive cells and extensive expansion make them one of the key players in establishment and persistence of the HIV-1 reservoir. Moreover, the expansion of SCM in acute HIV-1 infection was a result of Fas upregulation on the surface of naive CD4+T cells. Interestingly, the upregulation of Fas receptor and expansion of SCM in acute HIV-1 infection was associated with the early viral set point and disease progression (rho = 0.47,P = 0.02, and rho = 0.42,P = 0.041, respectively). Taken together, our data demonstrate an expansion of SCM during early acute HIV-1 infection which is associated with disease outcome.IMPORTANCEUnderstanding the immunopathology of acute HIV-1 infection will help to develop eradication strategies. We demonstrate here that a CD4+T cell memory subset expands during acute HIV-1 infection, which is associated with disease progression.


2020 ◽  
Vol 94 (14) ◽  
Author(s):  
Anastassia Mikhailova ◽  
José Carlos Valle-Casuso ◽  
Annie David ◽  
Valérie Monceaux ◽  
Stevenn Volant ◽  
...  

ABSTRACT HIV-1 successfully establishes long-term infection in its target cells despite viral cytotoxic effects. We have recently shown that cell metabolism is an important factor driving CD4+ T cell susceptibility to HIV-1 and the survival of infected cells. We show here that expression of antiapoptotic clone 11 (AAC-11), an antiapoptotic factor upregulated in many cancers, increased with progressive CD4+ T cell memory differentiation in association with the expression of cell cycle, activation, and metabolism genes and was correlated with susceptibility to HIV-1 infection. Synthetic peptides based on the LZ domain sequence of AAC-11, responsible for its interaction with molecular partners, were previously shown to be cytotoxic to cancer cells. Here, we observed that these peptides also blocked HIV-1 infection by inducing the death of HIV-1-susceptible primary CD4+ T cells across all T cell subsets. The peptides targeted metabolically active cells and had the greatest effect on effector and transitional CD4+ T cell memory subsets. Our results suggest that the AAC-11 survival pathway is potentially involved in the survival of HIV-1-infectible cells and provide proof of principle that some cellular characteristics can be targeted to eliminate the cells offering the best conditions to sustain HIV-1 replication. IMPORTANCE Although antiretroviral treatment efficiently blocks HIV multiplication, it cannot eliminate cells already carrying integrated proviruses. In the search for an HIV cure, the identification of new potential targets to selectively eliminate infected cells is of the outmost importance. We show here that peptides derived from antiapoptotic clone 11 (AAC-11), whose expression levels correlated with susceptibility to HIV-1 infection of CD4+ T cells, induced cytotoxicity in CD4+ T cells showing the highest levels of activation and metabolic activity, conditions known to favor HIV-1 infection. Accordingly, CD4+ T cells that survived the cytotoxic action of the AAC-11 peptides were resistant to HIV-1 replication. Our results identify a new potential molecular pathway to target HIV-1 infection.


1997 ◽  
Vol 185 (4) ◽  
pp. 767-776 ◽  
Author(s):  
Campbell Bunce ◽  
Eric B. Bell

The cellular basis of immunological memory remains a controversial area with respect to the identity of memory T cells and the role of persisting antigen. CD4 T cells are phenotypically divided by the expression of high and low molecular weight isoforms of CD45, surface markers that are frequently used to identify “naive” (CD45Rhigh) and “memory” (CD45Rlow) subsets. The latter subset responds rapidly in antigen recall assays but paradoxically has a short life span, a property that is difficult to reconcile with long-term memory. The present study examines these issues using a DTH (delayed-type hypersensitivity) model in which contact sensitivity to dinitrochlorobenzene (DNCB) was transferred to athymic nude rats by recirculating CD4 T cell subsets defined in the rat by the anti-CD45RC mAb OX22. As expected, CD45RC+ (but not RC−) CD4 T cells from normal unprimed rats transferred a DNCB-specific DTH response, whereas, 4 d after sensitization the CD45RC− (memory) subset alone contained the DNCB reactivity. However, when donor cells were collected from thymectomized rats sensitized two mo earlier, DNCB-specific responses were transferred by both CD45RC− and RC+ subsets suggesting that many of the latter had developed from cells with a memory phenotype. This was confirmed when CD45RC− CD4 T cells from 4-d primed rats were parked in intermediate nude recipients and recovered 2 mo later. DNCB-specific activity was now found wholly within the CD45RC+ “revertant” subset; the CD45RC− CD4 T cell population was devoid of activity. Importantly, we found that the total switch-back from CD45RC− to RC+ could be prevented, apparently by persisting antigen. The results indicate that there are two functionally distinct categories of memory T cells: one, a short-lived CD45Rlow type which orchestrates the rapid kinetics, the other, a longer-lived CD45Rhigh revertant which ensures that immunological memory endures.


2015 ◽  
Vol 89 (15) ◽  
pp. 7829-7840 ◽  
Author(s):  
Selena Vigano ◽  
Jordi Negron ◽  
Zhengyu Ouyang ◽  
Eric S. Rosenberg ◽  
Bruce D. Walker ◽  
...  

ABSTRACTHIV-1-specific CD8 T cells can influence HIV-1 disease progression during untreated HIV-1 infection, but the functional and phenotypic properties of HIV-1-specific CD8 T cells in individuals treated with suppressive antiretroviral therapy remain less well understood. Here we show that a subgroup of HIV-1-specific CD8 T cells with stem cell-like properties, termed T memory stem cells (TSCMcells), is enriched in patients receiving suppressive antiretroviral therapy compared with their levels in untreated progressors or controllers. In addition, a prolonged duration of antiretroviral therapy was associated with a progressive increase in the relative proportions of these stem cell-like HIV-1-specific CD8 T cells. Interestingly, the proportions of HIV-1-specific CD8 TSCMcells and total HIV-1-specific CD8 TSCMcells were associated with the CD4 T cell counts during treatment with antiretroviral therapy but not with CD4 T cell counts, viral loads, or immune activation parameters in untreated patients, including controllers. HIV-1-specific CD8 TSCMcells had increased abilities to secrete interleukin-2 in response to viral antigen, while secretion of gamma interferon (IFN-γ) was more limited in comparison to alternative HIV-1-specific CD8 T cell subsets; however, only proportions of IFN-γ-secreting HIV-1-specific CD8 TSCMcells were associated with CD4 T cell counts during antiretroviral therapy. Together, these data suggest that HIV-1-specific CD8 TSCMcells represent a long-lasting component of the cellular immune response to HIV-1 that persists in an antigen-independent fashion during antiretroviral therapy but seems unable to survive and expand under conditions of ongoing viral replication during untreated infection.IMPORTANCEMemory CD8 T cells that imitate the functional properties of stem cells to maintain lifelong cellular immunity have been hypothesized for many years, but only recently have such cells, termed T memory stem cells (TSCMcells), been physically identified and isolated in humans, mice, and nonhuman primates. Here, we investigated whether cellular immune responses against HIV-1 include such T memory stem cells. Our data show that HIV-1-specific CD8 T memory stem cells are detectable during all stages of HIV-1 infection but occur most visibly at times of prolonged viral antigen suppression by antiretroviral combination therapy. These cells may therefore be particularly relevant for designing antiviral immune defense strategies against the residual reservoir of HIV-1-infected cells that persists despite treatment and leads to viral rebound upon treatment discontinuation.


2021 ◽  
Vol 12 ◽  
Author(s):  
Thomas J. Weitering ◽  
Janine E. Melsen ◽  
Monique M. van Ostaijen-ten Dam ◽  
Corry M. R. Weemaes ◽  
Marco W. Schilham ◽  
...  

Ataxia Telangiectasia (AT) is a rare inherited disorder characterized by progressive cerebellar ataxia, chromosomal instability, cancer susceptibility and immunodeficiency. AT is caused by mutations in the ATM gene, which is involved in multiple processes linked to DNA double strand break repair. Immunologically, ATM mutations lead to hampered V(D)J recombination and consequently reduced numbers of naive B and T cells. In addition, class switch recombination is disturbed resulting in antibody deficiency causing common, mostly sinopulmonary, bacterial infections. Yet, AT patients in general have no clinical T cell associated infections and numbers of memory T cells are usually normal. In this study we investigated the naive and memory T cell compartment in five patients with classical AT and compared them with five healthy controls using a 24-color antibody panel and spectral flow cytometry. Multidimensional analysis of CD4 and CD8 TCRαβ+ cells revealed that early naive T cell populations, i.e. CD4+CD31+ recent thymic emigrants and CD8+CCR7++CD45RA++ T cells, were strongly reduced in AT patients. However, we identified normal numbers of stem cell memory T cells expressing CD95, which are antigen-experienced T cells that can persist for decades because of their self-renewal capacity. We hypothesize that the presence of stem cell memory T cells explains why AT patients have an intact memory T cell compartment. In line with this novel finding, memory T cells of AT patients were normal in number and expressed chemokine receptors, activating and inhibitory receptors in comparable percentages as controls. Comparing memory T cell phenotypes by Boolean gating revealed similar diversity indices in AT compared to controls. We conclude that AT patients have a fully developed memory T cell compartment despite strongly reduced naive T cells. This could be explained by the presence of normal numbers of stem cell memory T cells in the naive T cell compartment, which support the maintenance of the memory T cells. The identification of stem cell memory T cells via our spectral flow cytometric approach is highly relevant for better understanding of T cell immunity in AT. Moreover, it provides possibilities for further research on this recently identified T cell population in other inborn errors of immunity.


Sign in / Sign up

Export Citation Format

Share Document