scholarly journals Radiation necrosis after a combination of external beam radiotherapy and iodine-125 brachytherapy in gliomas

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Indrawati Hadi ◽  
Daniel Reitz ◽  
Raphael Bodensohn ◽  
Olarn Roengvoraphoj ◽  
Stefanie Lietke ◽  
...  

Abstract Purpose Frequency and risk profile of radiation necrosis (RN) in patients with glioma undergoing either upfront stereotactic brachytherapy (SBT) and additional salvage external beam radiotherapy (EBRT) after tumor recurrence or vice versa remains unknown. Methods Patients with glioma treated with low-activity temporary iodine-125 SBT at the University of Munich between 1999 and 2016 who had either additional upfront or salvage EBRT were included. Biologically effective doses (BED) were calculated. RN was diagnosed using stereotactic biopsy and/or metabolic imaging. The rate of RN was estimated with the Kaplan Meier method. Risk factors were obtained from logistic regression models. Results Eighty-six patients (49 male, 37 female, median age 47 years) were included. 38 patients suffered from low-grade and 48 from high-grade glioma. Median follow-up was 15 months after second treatment. Fifty-eight patients received upfront EBRT (median total dose: 60 Gy), and 28 upfront SBT (median reference dose: 54 Gy, median dose rate: 10.0 cGy/h). Median time interval between treatments was 19 months. RN was diagnosed in 8/75 patients. The 1- and 2-year risk of RN was 5.1% and 11.7%, respectively. Tumor volume and irradiation time of SBT, number of implanted seeds, and salvage EBRT were risk factors for RN. Neither of the BED values nor the time interval between both treatments gained prognostic influence. Conclusion The combination of upfront EBRT and salvage SBT or vice versa is feasible for glioma patients. The risk of RN is mainly determined by the treatment volume but not by the interval between therapies.

Author(s):  
Hideya Yamazaki ◽  
Gen Suzuki ◽  
Norihiro Aibe ◽  
Satoaki Nakamura ◽  
Ken Yoshida ◽  
...  

Abstract The aim of this study was to survey the present status and patterns of reirradiation (Re-RT) practice using external beam radiotherapy in Japan. We distributed an e-mail questionnaire to the Japanese Society for Radiation Oncology partner institutions, which consisted of part 1 (number of Re-RT cases in 2008–2012 and 2013–2018) and part 2 (indications and treatment planning for Re-RT and eight case scenarios). Of the 85 institutions that replied to part 1, 75 (88%) performed Re-RTs. However, 59 of these 75 institutions (79%) reported difficulty in obtaining Re-RT case information from their databases. The responses from 37 institutions included the number of Re-RT cases, which totaled 508 in the period from 2009 to 2013 (institution median 3; 0–235), and an increase to 762 cases in the period from 2014 to 2018 (12.5; 0–295). A total of 47 physicians responded to part 2 of the survey. Important indications for Re-RT that were considered were age, performance status, life expectancy, absence of distant metastases and time interval since previous radiotherapy. In addition to clinical decision-making factors, previous total radiation dose, volume of irradiated tissue and the biologically equivalent dose were considered during Re-RT planning. From the eight site-specific scenarios presented to the respondents, >60% of radiation oncologists agreed to perform Re-RT. Re-RT cases have increased in number, and interest in Re-RT among radiation oncologists has increased recently due to advances in technology. However, several problems exist that emphasize the need for consensus building and the establishment of guidelines for practice and prospective evaluation.


Head & Neck ◽  
2014 ◽  
Vol 36 (12) ◽  
pp. E125-E128 ◽  
Author(s):  
Na Meng ◽  
Xiaomeng Zhang ◽  
Anyan Liao ◽  
Suqing Tian ◽  
Weiqiang Ran ◽  
...  

1989 ◽  
Vol 71 (1) ◽  
pp. 77-82 ◽  
Author(s):  
Scott Shapiro ◽  
John Mealey ◽  
Carl Sartorius

✓ The authors present seven cases of malignant gliomas that occurred after radiation therapy administered for diseases different from the subsequent glial tumor. Included among these seven are three patients who were treated with interstitial brachytherapy. Previously reported cases of radiation-induced glioma are reviewed and analyzed for common characteristics. Children receiving central nervous system irradiation appear particularly susceptible to induction of malignant gliomas by radiation. Interstitial brachytherapy may be used successfully instead of external beam radiotherapy in previously irradiated, tumor-free brain, and thus may reduce the risk of radiation necrosis.


BMC Medicine ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Shulun Nie ◽  
Yufang Zhu ◽  
Jia Yang ◽  
Tao Xin ◽  
Song Xue ◽  
...  

Abstract Background There is no consensus regarding the clinical target volume (CTV) margins in radiotherapy for glioma. In this study, we aimed to perform a complete macropathologic analysis examining microscopic tumor extension (ME) to more accurately define the CTV in glioma. Methods Thirty-eight supra-total resection specimens of glioma patients were examined on histologic sections. The ME distance, defined as the maximum linear distance from the tumor border to the invasive tumor cells, was measured at each section. We defined the CTV based on the relationships between ME distance and clinicopathologic features. Results Between February 2016 and July 2020, a total of 814 slides were examined, corresponding to 162 slides for low-grade glioma (LGG) and 652 slides for high-grade glioma (HGG). The ME value was 0.69 ± 0.43 cm for LGG and 1.29 ± 0.54 cm for HGG (P < 0.001). After multivariate analysis, tumor grade, O6-methylguanine-DNA-methyltransferase promoter methylated status (MGMTm), isocitrate dehydrogenase wild-type status (IDHwt), and 1p/19q non-co-deleted status (non-codel) were positively correlated with ME distance (all P < 0.05). We defined the CTV of glioma based on tumor grade. To take into account approximately 95% of the ME, a margin of 1.00 cm, 1.50 cm, and 2.00 cm were chosen for grade II, grade III, and grade IV glioma, respectively. Paired analysis of molecularly defined patients confirmed that tumors that had all three molecular alterations (i.e., MGMTm/IDHwt/non-codel) were the most aggressive subgroups (all P < 0.05). For these patients, the margin could be up to 1.50 cm, 2.00 cm, and 2.50 cm for grade II, grade III, and grade IV glioma, respectively, to cover the subclinical lesions in 95% of cases. Conclusions The ME was different between the grades of gliomas. It may be reasonable to recommend 1.00 cm, 1.50 cm, and 2.00 cm CTV margins for grade II, grade III, and grade IV glioma, respectively. Considering the highly aggressive nature of MGMTm/IDHwt/non-codel tumors, for these patients, the margin could be further expanded by 0.5 cm. These recommendations would encompass microscopic disease extension in 95% of cases. Trial registration The trial was registered with Chinese Clinical Trial Registry (ChiCTR2100049376).


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0255798
Author(s):  
Kara Magee ◽  
Ian R. Marsh ◽  
Michelle M. Turek ◽  
Joseph Grudzinski ◽  
Eduardo Aluicio-Sarduy ◽  
...  

Rationale Murine syngeneic tumor models have revealed efficacious systemic antitumor responses following primary tumor in situ vaccination combined with targeted radionuclide therapy to secondary or metastatic tumors. Here we present studies on the safety and feasibility of this approach in a relevant translational companion dog model (n = 17 dogs) with advanced cancer. Methods The three component of the combination immuno-radiotherapy approach were employed either separately or in combination in companion dogs with advanced stage cancer. In situ vaccination was achieved through the administration of hypofractionated external beam radiotherapy and intratumoral hu14.18-IL2 fusion immunocytokine injections to the index tumor. In situ vaccination was subsequently combined with targeted radionuclide therapy using a theranostic pairing of IV 86Y-NM600 (for PET imaging and subject-specific dosimetry) and IV 90Y-NM600 (therapeutic radionuclide) prescribed to deliver an immunomodulatory 2 Gy dose to all metastatic sites in companion dogs with metastatic melanoma or osteosarcoma. In a subset of dogs, immunologic parameters preliminarily assessed. Results The components of the immuno-radiotherapy combination were well tolerated either alone or in combination, resulting in only transient low grade (1 or 2) adverse events with no dose-limiting events observed. In subject-specific dosimetry analyses, we observed 86Y-NM600 tumor:bone marrow absorbed-dose differential uptakes ≥2 in 4 of 5 dogs receiving the combination, which allowed subsequent safe delivery of at least 2 Gy 90Y-NM600 TRT to tumors. NanoString gene expression profiling and immunohistochemistry from pre- and post-treatment biopsy specimens provide evidence of tumor microenvironment immunomodulation by 90Y-NM600 TRT. Conclusions The combination of external beam radiotherapy, intratumoral immunocytokine, and targeted radionuclide immuno-radiotherapy known to have activity against syngeneic melanoma in murine models is feasible and well tolerated in companion dogs with advanced stage, spontaneously arising melanoma or osteosarcoma and has immunomodulatory potential. Further studies evaluating the dose-dependent immunomodulatory effects of this immuno-radiotherapy combination are currently ongoing.


Sign in / Sign up

Export Citation Format

Share Document