scholarly journals Combined effect of dose gradient and rotational error on prescribed dose coverage for single isocenter multiple brain metastases in frameless stereotactic radiotherapy

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Jai-Woong Yoon ◽  
Soah Park ◽  
Kwang-Ho Cheong ◽  
Sei-Kwon Kang ◽  
Tae Jin Han

Abstract Background To evaluate the combined effect of rotational error and dose gradient on target dose coverage in frameless stereotactic radiotherapy. Methods Three spherical targets of different diameters (1, 1.5, and 2 cm) were drawn and placed equidistantly on the same axial brain computed tomography (CT) images. To test the different isocenter-target distances, 2.5- and 5-cm configurations were prepared. Volumetric modulated arc therapy plans were created for different dose gradients from the target, in which the dose gradients were modified using the maximum dose inside the target. To simulate the rotational error, CT images and targets were rotated in two ways by 0.5°, 1°, and 2°, in which one rotation was in the axial plane and the other was in three dimensions. The initial optimized plan parameters were copied to the rotated CT sets, and the doses were recalculated. The coverage degradation after rotation was analyzed according to the target dislocation and 12-Gy volume. Results A shallower dose gradient reduced the loss of target coverage under target dislocation, and the effect was clearer for small targets. For example, the coverage of the 1-cm target under 1-mm dislocation increased from 93 to 95% by increasing the Paddick gradient index from 5.0 to 7.9. At the same time, the widely accepted necrosis indicator, the 12-Gy volume, increased from 1.2 to 3.5 cm3, which remained in the tolerable range. From the differential dose volume histogram (DVH) analysis, the shallower dose gradient ensured that the dose-deficient under-covered target volume received a higher dose similar to that in the prescription. Conclusions For frameless stereotactic brain radiotherapy, the gradient, alongside the margin addition, can be adjusted as an ancillary parameter for small targets to increase target coverage or at least limit coverage reduction in conditions with probable positioning error.

2016 ◽  

Aim: To study the impact of tumour regression occurring during IMRT for locally advanced carcinoma cervix and study dose distribution to target volume and OARs and hence the need for any replanning. Materials and Methods: 40 patients undergoing IM-IGRT and weekly chemotherapy were included in the study. After 36 Gy, a second planning CT-scan was done and target volume and OARs were recontoured. First plan (non-adaptive) was compared with second plan (adaptive plan) to evaluate whether it would still offer sufficient target coverage to the CTV and spare the OARs after having delivered 36 Gy. Finally new plan was created based on CT-images to investigate whether creating a new treatment plan would optimize target coverage and critical organ sparing. To measure the response of the primary tumour and pathologic nodes to EBRT, the differences in the volumes of the primary GTV and nodal GTV between the pretreatment and intratreatment CT images was calculated. Second intratreatment IMRT plans was generated, using the delineations of the intratreatment CT images. The first IMRT plan (based on the first CT-scan or non adaptive plan) was compared with second IMRT plan (based on the second CT-scan or adaptive plan). Results: 35% patients had regression in GTV in the range of 4.1% to 5%, 20% in the range of 1.1%-2%, 15% in the range of 2.1%-3% and 20% in the range of 6%-15%. There was significant mean decrease in GTV of 4.63 cc (p=0.000). There was a significant decrease in CTV on repeat CT done after 36 Gy by 23.31 cc (p=0.000) and in PTV by 23.31 cc (p=0.000). There was a statistically significant increase in CTV D98, CTV D95, CTV D50 and CTV D2 in repeat planning CT done after 36 Gy. There was no significant alteration in OARs doses. Conclusion: Despite tumour regression and increased target coverage in locally advanced carcinoma cervix after a delivery of 36 Gy there was no sparing of OARs. Primary advantage of adaptive RT seems to be in greater target coverage with non-significant normal tissue sparing.


2019 ◽  
Vol 1 (Supplement_1) ◽  
pp. i26-i27
Author(s):  
Diana Julie ◽  
Sean Mahase ◽  
Diana No ◽  
Khaled Salah ◽  
Jonathan Knisely

Abstract OBJECTIVE: Whole brain radiotherapy (WBRT) causes neurocognitive decline. Hippocampal avoidance WBRT (HA-WBRT) reduces hippocampal irradiation, potentially mitigating neurocognitive sequelae. We compared hippocampal and brain dosimetry with HA-WBRT with 6 megavoltage (MV) versus 10 MV photon energies. METHODS: Twenty consecutive patients treated with WBRT were retrospectively replanned with HA-WBRT techniques using 6 MV and 10 MV photons. Coplanar volumetric modulated arc therapy was employed, with a prescription dose of 3000 cGy in 10 fractions. Planning was done with Eclipse version 13.6 or 15.6. Nine patients were planned with 2.5 mm multileaf collimator leaves, with the remainder planned with 5 mm leaves. The hippocampi were contoured and a HA structure was generated using a uniform 5 mm expansion. A planning target volume (PTV) was defined as the brain parenchyma minus the HA structure. NRG-CC001 dose constraints were used. For each variable, descriptive statistics were calculated. Comparisons were made using two-tailed Wilcoxon signed rank tests or paired t-tests. RESULTS: The minimum hippocampal dose (D100%) was improved with 6 MV plans, 841 cGy compared to 914 cGy with 10 MV (p< 0.005). The maximum hippocampal dose (D0.03cc) was reduced with 6 MV planning, 1614 cGy versus 1676 cGy for 10 MV (p< 0.0001). With 6 MV photons, a greater number of plans met NRG-CC001 constraints without deviations. 6 MV photons improved PTV coverage by the 95% isodose line, 96.6% compared to 95.9% for 10 MV (p=0.021). 6 MV photon plans decreased the volume of PTV receiving ≥105% of the prescription, 84.2% versus 87.9% for 10 MV (p=0.006). The mean dose, hot spots, and cold spots did not differ by photon energy. PTV dose constraints were always met. CONCLUSION: 6 MV photon HA-WBRT plans are dosimetrically superior to 10 MV, reducing hippocampal radiation dose, without compromise in brain coverage and improved target dose homogeneity.


2019 ◽  
Vol 18 (4) ◽  
pp. 323-328 ◽  
Author(s):  
James C. L. Chow ◽  
Runqing Jiang ◽  
Lu Xu

AbstractPurpose:Dose distribution index (DDI) is a treatment planning evaluation parameter, reflecting dosimetric information of target coverage that can help to spare organs at risk (OARs) and remaining volume at risk (RVR). The index has been used to evaluate and compare prostate volumetric modulated arc therapy (VMAT) plans using two different plan optimisers, namely photon optimisation (PO) and its predecessor, progressive resolution optimisation (PRO).Materials and methods:Twenty prostate VMAT treatment plans were created using the PO and PRO in this retrospective study. The 6 MV photon beams and a dose prescription of 78 Gy/39 fractions were used in plans with the same dose–volume criteria for plan optimisation. Dose–volume histograms (DVHs) of the planning target volume (PTV), as well as of OARs such as the rectum, bladder, left and right femur were determined in each plan. DDIs were calculated and compared for plans created by the PO and PRO based on DVHs of the PTV and all OARs.Results:The mean DDI values were 0·784 and 0·810 for prostate VMAT plans created by the PO and PRO, respectively. It was found that the DDI of the PRO plan was about 3·3% larger than the PO plan, which means that the dose distribution of the target coverage and sparing of OARs in the PRO plan was slightly better. Changing the weighting factors in different OARs would vary the DDI value by ∼7%. However, for plan comparison based on the same set of dose–volume criteria, the effect of weighting factor can be neglected because they were the same in the PO and PRO.Conclusions:Based on the very similar DDI values calculated from the PO and PRO plans, with the DDI value in the PRO plan slightly larger than that of the PO, it may be concluded that the PRO can create a prostate VMAT plan with slightly better dose distribution regarding the target coverage and sparing of OARs. Moreover, we found that the DDI is a simple and comprehensive dose–volume parameter for plan evaluation considering the target, OARs and RVR.


2021 ◽  
Author(s):  
Maria Kawula ◽  
Dinu Purice ◽  
Minglun Li ◽  
Gerome Vivar ◽  
Seyed-Ahmad Ahmadi ◽  
...  

Abstract Background The evaluation of the automatic segmentation algorithms is commonly performed using geometric metrics, yet an evaluation based on dosimetric parameters might be more relevant in clinical practice but is still lacking in the literature. The aim of this study was to investigate the impact of state-of-the-art 3D U-Net-generated organ delineations on dose optimization in intensity-modulated radiation therapy (IMRT) for prostate patients for the first time. Methods A database of 69 computed tomography (CT) images with prostate, bladder, and rectum delineations was used for single-label 3D U-Net training with dice similarity coefficient (DSC)-based loss. Volumetric modulated arc therapy (VMAT) plans have been generated for both manual and automatic segmentations with the same optimization settings. These were chosen to give consistent plans when applying perturbations to the manual segmentations. Contours were evaluated in terms of DSC, average and 95% Hausdorff distance (HD). Dose distributions were evaluated with the manual segmentation as reference using dose volume histogram (DVH) parameters and a 3%/3mm gamma-criterion with 10% dose cut-off. A Pearson correlation coefficient between DSC and dosimetric metrics, gamma index and DVH parameters, has been calculated. Results 3D U-Net based segmentation achieved a DSC of 0.87(0.03) for prostate, 0.97(0.01) for bladder and 0.89(0.04) for rectum. The mean and 95% HD were below 1.6(0.4) and below 5(4) mm, respectively. The DVH parameters V 60/65/70 Gy for the bladder and V 50/65/70 Gy for the rectum showed agreement between dose distributions within ±5% and ±2%, respectively. The DVH parameters for prostate and prostate+3mm margin (surrogate clinical target volume) showed good target coverage for the 3D U-Net segmentation with the exception of one case. The average gamma pass-rate was 85\%. A comparison between geometric and dosimetric metrics showed no strong statistically significant correlation between these metrics. Conclusions The 3D U-Net developed for this work achieved state-of-the-art geometrical performance. The study highlighted the importance of dosimetric evaluation on top of standard geometric parameters and concluded that the automatic segmentation is sufficiently accurate to assist the physicians in manually contouring organs in CT images of the male pelvic region, which is an important step towards a fully automated workflow in IMRT.


2016 ◽  
Vol 34 (4_suppl) ◽  
pp. 445-445
Author(s):  
Jason K Molitoris ◽  
Christopher Brown ◽  
Shifeng Chen ◽  
Kimberly Marter ◽  
Kristin Spaeth ◽  
...  

445 Background: Stereotactic body radiation therapy(SBRT) is increasingly used in locally advanced pancreatic cancer (LAPC). SBRT can be delivered using 3D conformal, static intensity modulated radiotherapy (IMRT), and volumetric modulated arc therapy (VMAT) techniques. Prior data suggest advantages of using VMAT over IMRT for single-fraction pancreas SBRT. We performed the first dosimetric comparison of IMRT with one and two arc VMAT for 5-fraction pancreas SBRT, a more commonly used regimen. Methods: We generated 5-fraction SBRT plans for 12 LAPC patients who were previously treated at our institution with standard fractionation. The prescription dose was 33 Gy delivered in 6.6 Gy fractions. Assuming breath hold, 3 plans were generated for each patient: 9-beam static IMRT, 1-arc VMAT (VMAT1), and 2-arc VMAT (VMAT2) targeting the primary tumor. Target coverage and normal tissue doses were compared between the delivery techniques. Results: Each plan met target coverage planning goals. More VMAT2 plans (100%) were able to meet all normal tissue constraints than VMAT1 (83.3%) or IMRT (75%). Duodenal dose was most lowest for VMAT2 compared to VMAT1 and IMRT for mean dose (8.66 vs. 9.00 vs. 8.99 Gy); D4% (25.9 vs. 26.6 vs. 26.3 Gy); V10Gy (38.02 vs. 39.33 vs. 40.11%), V15Gy (23.98 vs. 25.88 vs. 25.97%), V20Gy (12.73 vs. 13.84 vs. 14.95%), and V25Gy (5.96 vs. 6.85 vs. 6.78%)(all p < 0.05). The tumors closest to the duodenum had statistically significantly improved V30Gy for VMAT2 compared to VMAT1 and IMRT (both p < 0.001). VMAT1 and VMAT2 reduced dose to the stomach, spinal cord, and liver compared to IMRT; kidney dose, however, was lowest using IMRT. VMAT2 plans had the highest conformity, but required the most monitor units to deliver. Delivery time was significantly longer with IMRT, compared to VMAT1 and VMAT2 (8.25 vs. 2.16 vs. 3.33 mins). Conclusions: These data suggest that VMAT2 should be strongly considered for 5-fraction pancreas SBRT because of superior normal tissue sparing, more conformal target volume coverage, and faster treatment delivery time (compared to IMRT). Further evaluation is needed to clarify whether the dosimetric advantages of VMAT2 are clinically significant.


2016 ◽  
Author(s):  
Amit Kumar Choudhary

Aim: To study the impact of tumour regression occurring during IMRT for locally advanced Carcinoma cervix and study dose distribution to target volume and OARs and hence the need for any replanning. Methods and Materials: 40 patients undergoing IM-IGRT and weekly chemotherapy were included in the study. After 36Gy, a second planning CT-scan was done and target volume and OARs were recontoured. First plan (non-adaptive) was compared with second plan (adaptive plan) to evaluate whether it would still offer sufficient target coverage to the CTV and spare the OARs after having delivered 36Gy. Finally new plan was created based on CT-images to investigate whether creating a new treatment plan would optimize target coverage and critical organ sparing. To measure the response of the primary tumour and pathologic nodes to EBRT, the differences in the volumes of the primary GTV and nodal GTV between the pretreatment and intratreatment CT images was calculated. Second intratreatment IMRT plans was generated, using the delineations of the intratreatment CT images. The first IMRT plan (based on the first CT-scan or non adaptive plan) was compared with second IMRT plan (based on the second CT-scan or adaptive plan). Results: 35% patients had regression in GTV in the range of 4.1% to 5%, 20% in the range of 1.1%-2%, 15% in the range of 2.1%-3% and 20% in the range of 6%-15%. There was significant mean decrease in GTV of 4.63cc (p=0.000). There was a significant decrease in CTV on repeat CT done after 36Gy by 23.31cc (p=0.000) and in PTV by 23.31cc (p=0.000). There was a statistically significant increase in CTV D98, CTV D95, CTV D50 and CTV D2 in repeat planning CT done after 36Gy. There was no significant alteration in OARs doses. Conclusion: Despite tumour regression and increased target coverage in locally advanced carcinoma cervix after a delivery of 36Gy there was no sparing of OARs. Primary advantage of adaptive RT seems to be in greater target coverage with non-significant normal tissue sparing.


2021 ◽  
Vol 20 ◽  
pp. 153303382110439
Author(s):  
Dandan Wang ◽  
Xingmin Ma ◽  
Lu Fu ◽  
Jiabing Gu ◽  
Tong Bai ◽  
...  

Objective: To investigate the features of helical tomotherapy and co-planar dual Arcs volumetric-modulated arc therapy during prophylactic cranial irradiation associated with bilateral hippocampal tissue sparing. Materials and methods: Helical tomotherapy and co-planar dual arcs volumetric-modulated arc therapy treatment plans were generated with a dose of 30 Gy/10 fractions in 16 patients treated with prophylactic cranial irradiation. The dose to the bilateral hippocampal tissues, organs at risk, and planning target volume were determined when the average dose of bilateral hippocampal tissues was reduced by approximately 4 Gy as an observation point. Changes in dosimetry when sparing the bilateral hippocampal tissues were determined for both modalities. Results: When bilateral hippocampal tissues were restricted to 8 Gy, D40%mean-bilateral hippocampal tissues = 7.64 ± 0.41 Gy in helical tomotherapy, while D40%mean-bilateral hippocampal tissues = 10.96 ± 0.38 Gy in co-planar dual arcs volumetric-modulated arc therapy volumetric-modulated arc therapy. Helical tomotherapy was associated with significantly lower doses to organs at risk, including Dmean-bilateral hippocampal tissues ( P = .03), D98%-bilateral hippocampal tissues ( P = .01), D2%-bilateral hippocampal tissues ( P = .01), Dmean-inner ear ( P = .02), Dmean-parotid glands ( P = .02), Dmax-lens ( P = .02), and Dmax-brainstem ( P = .02), but not Dmax-optic nerves ( P = .87). Helical tomotherapy provided better target coverage, with lower average D2%-PTV ( P = .02), higher average D98%-PTV ( P = .02), and better conformal index (0.87 vs 0.84, P = .02) and homogeneity index (0.15 vs 0.21, P = .05). With smaller bilateral hippocampal tissues doses, the planning target volume dose changed across 3 dosimetry regions for both modalities; the plateau region (>20.0 Gy for helical tomotherapy versus >16.0 Gy for co-planar dual arcs volumetric-modulated arc therapy), gradient region (20.0-12.0 Gy vs 16.0-11.0 Gy), and falling region (<12.0 Gy vs <11.0 Gy). The average delivery duration of helical tomotherapy was almost 7.7 times longer than that of co-planar dual arcs volumetric-modulated arc therapy. Conclusions: Helical tomotherapy was better at sparing the bilateral hippocampal tissues and organs at risk and had better target coverage but a significantly longer treatment duration than co-planar dual arcs volumetric-modulated arc therapy. Further dose decreases in the bilateral hippocampal tissues would yield worse target dose coverage.


Author(s):  
Jyotiman Nath ◽  
Pranjal Goswami ◽  
Partha Pratim Medhi ◽  
Gautam Sarma ◽  
Apurba Kumar Kalita ◽  
...  

Abstract Aim: This study aims to compare the dosimetric parameters among four different external beam radiotherapy techniques used for the treatment of retinoblastoma. Materials and methods: Computed tomography (CT) sets of five retinoblastoma patients who required radiotherapy to one globe were included. Four different plans were generated for each patient using three dimensional conformal radiotherapy (3DCRT), intensity modulated radiotherapy (IMRT), volumetric modulated arc therapy (VMAT) and VMAT using flattening filter free (VMAT-FFF) beam techniques. Plans were compared for target coverage and organs at risk (OARs) sparing. Results: The target coverage of planning target volume (PTV) for all the four modalities were clinically acceptable with a V95 of 95 ± 0%, 97·6 ± 1·87%, 99·3 ± 0·5% and 99·17 ± 0·45% for 3DCRT, IMRT, VMAT and VMAT-FFF respectively. The VMAT and IMRT plans had better target coverage than the 3DCRT plans (p = 0·001 and p = 0·07 respectively). IMRT and VMAT plans were also found superior to 3DCRT plans in terms of OAR sparing like brainstem, optic chiasm, brain (p < 0·05). VMAT delivered significantly lower dose to the brainstem and contralateral optic nerve in comparison to IMRT. Use of VMAT-FFF beams did not show any benefit over VMAT in target coverage and OAR sparing. Conclusion: VMAT should be preferred over 3DCRT and IMRT for treatment of retinoblastoma owing to better target coverage and less dose to most of the OARs. However, IMRT and VMAT should be used with caution because of the increased low dose volumes to the OARs like contralateral lens and eyeball.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Audrey Copeland ◽  
Addie Barron ◽  
Jonas Fontenot

Abstract Background No consensus currently exists about the correct margin size to use for spinal SBRT. Margins have been proposed to account for various errors individually, but not with all errors combined to result in a single margin value. The purpose of this work was to determine a setup margin for five-fraction spinal SBRT based on known errors during radiotherapy to achieve at least 90% coverage of the clinical target volume with the prescription dose for at least 90% of patients and not exceed a 30 Gy point dose or 23 Gy to 10% of the spinal cord subvolume. Methods The random and systematic error components of intrafraction motion, residual setup error, and end-to-end system accuracy were measured. The patient’s surface displacement was measured to quantify intrafraction motion, the residual setup error was quantified by re-registering accepted daily cone beam computed tomography setup images, and the displacement between measured and planned dose profiles in a phantom quantified the end-to-end system accuracy. These errors and parameters were used to identify the minimum acceptable margin size. The margin recommendation was validated by assessing dose delivery across 140 simulated patient plans suffering from various random shifts representative of the measured errors. Results The errors were quantified in three dimensions and the analytical margin generated was 2.4 mm. With this margin applied in the superior/inferior direction only, at least 90% of the CTV was covered with the prescription dose for 96% of the 140 patients simulated with minimal negative effect on the spinal cord dose levels. Conclusions The findings of this work support that a 2.4 mm margin applied in the superior/inferior direction can achieve at least 90% coverage of the CTV for at least 90% of dual-arc volumetric modulated arc therapy spinal SBRT patients in the presence of errors when immobilized with vacuum bags.


2008 ◽  
Vol 109 (Supplement) ◽  
pp. 34-40 ◽  
Author(s):  
Paula L. Petti ◽  
David A. Larson ◽  
Sandeep Kunwar

Object The authors investigated the use of different collimator values in different sectors (hybrid shots) when treating patients with lesions close to critical structures with the Perfexion model Gamma Knife. Methods Twelve patients with various tumors (6 with a pituitary tumor, 3 with vestibular schwannoma, 2 with meningioma, and 1 with metastatic lesion) that were within 4 mm of the brainstem, optic nerve, pituitary stalk, or cochlea were considered. All patients were treated at the authors' institution between June 2007 and March 2008. The patients' treatments were replanned in 2 different ways. In the first plan, hybrid shots were used such that the steepest dose gradient was aligned with the junction between the target and the critical structure(s). This was accomplished by placing low-value collimators in appropriate sectors. In the second plan, no hybrid shots were used. Sector blocking (either manual or dynamic) was required for all plans to reduce the critical structure doses to acceptable levels. Prescribed doses ranged from 12 to 30 Gy at the periphery of the target. The plans in each pair were designed to be equally conformal in terms of both target coverage (as measured by the Paddick conformity index) and critical structure sparing. Results The average number of shots required was roughly the same using either planning technique (16.7 vs 16.6 shots with and without hybrids). However, for all patients, the number of blocked sectors required to protect critical areas was larger when hybrid shots were not used. On average, nearly twice as many blocked sectors (14.8 vs 7.0) were required for the plans that did not use hybrid shots. The number of high-value collimators used in each plan was also evaluated. For small targets (≤ 1 cm3), for which 8 mm was considered a high value for the collimator, plans employing hybrids used an average of 2.3 times as many 8-mm sectors as did their nonhybrid counterparts (7.4 vs 3.2 sectors). For large targets (> 1 cm3), for which 16 mm was considered a high value for the collimator, hybrid plans used an average of 1.4 times as many 16-mm sectors as did the plans without hybrids (10.7 vs 7.7 sectors). Decreasing the number of blocked sectors and increasing the number of high-value collimator sectors led to use of shorter beam-on times. Beam-on times were 1–39% higher (average 17%) when hybrid shots were not allowed. The average beam-on time for plans with and without hybrid shots was 67.4 versus 78.4 minutes. Conclusions The judicious use of hybrid shots in patients for whom the target is close to a critical structure is an efficient way to achieve conformal treatments while minimizing the beam-on time. The reduction in beam-on time with hybrid shots is attributed to a reduced use of blocked sectors and an increased number of high-value collimator sectors.


Sign in / Sign up

Export Citation Format

Share Document