scholarly journals Does clozapine really affect bone mineral density? An experimental study

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Bahattin Kerem Aydin ◽  
Selim Safali ◽  
Memduha Aydin ◽  
Umran Egilmez ◽  
Hakan Cebeci ◽  
...  

Abstract Purpose The aim of this study was to investigate the effect of clozapine use on bone tissue by applying computerized tomography, dual-energy X-ray absorptiometry, and histological and biomechanical analyses in an experimental rat model. Methods Sixteen female Wistar Albino rats were included in this study. These animals were divided into two groups: the control group and the clozapine group. The animals in the clozapine group received 10 mg/kg clozapine, and the animals in the control group received tap water by oral gavage daily for 28 days. After sacrification, the femurs of the rats were used for radiologic, histologic, dual-energy X-ray absorptiometry, and biomechanical evaluations. Results Although the mean values of the clozapine group were higher in terms of histological, bone mineral density, and biomechanical evaluations, the statistical analyses were not significantly different. Conclusion Clozapine use did not affect bone density in the rats. Clozapine can be the preferred treatment for patients with schizophrenia to avoid osteoporosis. It will be necessary to conduct further long-term follow-up and controlled studies in animals and humans to confirm these findings.

2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 227.2-228
Author(s):  
D. Claire ◽  
M. Geoffroy ◽  
L. Kanagaratnam ◽  
C. Isabelle ◽  
A. Hittinger ◽  
...  

Background:Dual energy X-ray absoprtiometry is the reference method to mesure bone mineral density (1). Loss of bone mineral density is significant if it exceeds the least significant change. The threshold value used in general population is 0,03 g/cm2 (2). Patients with obesity are known for having a higher bone mineral density due to metabolism and physiopathology characteristics (3,4).Objectives:The aim of our study was to determine the least significant change in bone densitometry in patients with obesity.Methods:We conducted an interventionnal study in 120 patients with obesity who performed a bone densitometry. We measured twice the bone mineral density at the lumbar spine, the femoral neck and the total hip in the same time (5,6). We determined the least significant change in bone densitometry from each pair of measurements, using the Bland and Altman method. We also determined the least significant change in bone densitometry according to each stage of obesity.Results:The least significant change in bone densitometry in patients with obesity is 0,046g/cm2 at the lumbar spine, 0.069 g/cm2 at the femoral neck and 0.06 g/cm2 at the total hip.Conclusion:The least significant change in bone densitometry in patients with obesity is higher than in general population. These results may improve DXA interpretation in this specific population, and may personnalize their medical care.References:[1]Lees B, Stevenson JC. An evaluation of dual-energy X-ray absorptiometry and comparison with dual-photon absorptiometry. Osteoporos Int. mai 1992;2(3):146-52.[2]Briot K, Roux C, Thomas T, Blain H, Buchon D, Chapurlat R, et al. Actualisation 2018 des recommandations françaises du traitement de l’ostéoporose post-ménopausique. Rev Rhum. oct 2018;85(5):428-40.[3]Shapses SA, Pop LC, Wang Y. Obesity is a concern for bone health with aging. Nutr Res N Y N. mars 2017;39:1-13.[4]Savvidis C, Tournis S, Dede AD. Obesity and bone metabolism. Hormones. juin 2018;17(2):205-17.[5]Roux C, Garnero P, Thomas T, Sabatier J-P, Orcel P, Audran M, et al. Recommendations for monitoring antiresorptive therapies in postmenopausal osteoporosis. Jt Bone Spine Rev Rhum. janv 2005;72(1):26-31.[6]Ravaud P, Reny JL, Giraudeau B, Porcher R, Dougados M, Roux C. Individual smallest detectable difference in bone mineral density measurements. J Bone Miner Res. août 1999;14(8):1449-56.Disclosure of Interests:None declared.


1995 ◽  
Vol 4 (2) ◽  
pp. 141-148
Author(s):  
Ryuzou Takaya ◽  
Masakuni Tokuda ◽  
Tatsuya Oguni ◽  
Haruki Tanaka ◽  
Kazutaka Konishi ◽  
...  

2013 ◽  
Vol 16 (3) ◽  
pp. 297-301 ◽  
Author(s):  
Marie Øbro Fosbøl ◽  
Anders Dupont ◽  
Louise Alslev ◽  
Bo Zerahn

Sign in / Sign up

Export Citation Format

Share Document