scholarly journals Aikeqing decreases viral loads in SHIV89.6-infected Chinese rhesus macaques

2016 ◽  
Vol 11 (1) ◽  
Author(s):  
Gao-Hong Zhang ◽  
Jian-Bao Han ◽  
Lin Zhu ◽  
Rong-Hua Luo ◽  
Xi-He Zhang ◽  
...  
Toxins ◽  
2015 ◽  
Vol 7 (1) ◽  
pp. 156-169 ◽  
Author(s):  
Rui-Rui Wang ◽  
Ka-Yee Au ◽  
Hong-Yi Zheng ◽  
Liang-Min Gao ◽  
Xuan Zhang ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (6) ◽  
pp. e0253487
Author(s):  
Conrad E. Z. Chan ◽  
Shirley G. K. Seah ◽  
De Hoe Chye ◽  
Shane Massey ◽  
Maricela Torres ◽  
...  

Although SARS-CoV-2-neutralizing antibodies are promising therapeutics against COVID-19, little is known about their mechanism(s) of action or effective dosing windows. We report the generation and development of SC31, a potent SARS-CoV-2 neutralizing antibody, isolated from a convalescent patient. Antibody-mediated neutralization occurs via an epitope within the receptor-binding domain of the SARS-CoV-2 Spike protein. SC31 exhibited potent anti-SARS-CoV-2 activities in multiple animal models. In SARS-CoV-2 infected K18-human ACE2 transgenic mice, treatment with SC31 greatly reduced viral loads and attenuated pro-inflammatory responses linked to the severity of COVID-19. Importantly, a comparison of the efficacies of SC31 and its Fc-null LALA variant revealed that the optimal therapeutic efficacy of SC31 requires Fc-mediated effector functions that promote IFNγ-driven anti-viral immune responses, in addition to its neutralization ability. A dose-dependent efficacy of SC31 was observed down to 5mg/kg when administered before viral-induced lung inflammatory responses. In addition, antibody-dependent enhancement was not observed even when infected mice were treated with SC31 at sub-therapeutic doses. In SARS-CoV-2-infected hamsters, SC31 treatment significantly prevented weight loss, reduced viral loads, and attenuated the histopathology of the lungs. In rhesus macaques, the therapeutic potential of SC31 was evidenced through the reduction of viral loads in both upper and lower respiratory tracts to undetectable levels. Together, the results of our preclinical studies demonstrated the therapeutic efficacy of SC31 in three different models and its potential as a COVID-19 therapeutic candidate.


2013 ◽  
Vol 65 (5) ◽  
pp. 371-386 ◽  
Author(s):  
Bianca R. Mothé ◽  
Scott Southwood ◽  
John Sidney ◽  
A. Michelle English ◽  
Amanda Wriston ◽  
...  

2012 ◽  
Vol 87 (3) ◽  
pp. 1322-1332 ◽  
Author(s):  
Felix Wussow ◽  
Yujuan Yue ◽  
Joy Martinez ◽  
Jesse D. Deere ◽  
Jeff Longmate ◽  
...  

ABSTRACTNeutralizing antibodies (NAb) are important for interfering with horizontal transmission of human cytomegalovirus (HCMV) leading to primary and congenital HCMV infection. Recent findings have shown that a pentameric virion complex formed by the glycoproteins gH/gL, UL128, UL130, and UL131A (UL128C) is required for HCMV entry into epithelial/endothelial cells (Epi/EC) and is the target of potent NAb in HCMV-seropositive individuals. Using bacterial artificial chromosome technology, we have generated a modified vaccinia Ankara virus (MVA) that stably coexpresses all 5 rhesus CMV (RhCMV) proteins homologous to HCMV UL128C, termed MVA-RhUL128C. Coimmunoprecipitation confirmed the interaction of RhgH with the other 4 RhCMV subunits of the pentameric complex. All 8 RhCMV-naïve rhesus macaques (RM) vaccinated with MVA-RhUL128C developed NAb that blocked infection of monkey kidney epithelial cells (MKE) and rhesus fibroblasts. NAb titers induced by MVA-RhUL128C measured on both cell types at 2 to 6 weeks postvaccination were comparable to levels observed in naturally infected RM. In contrast, MVA expressing a subset of RhUL128C proteins or RhgB glycoprotein only minimally stimulated NAb that inhibited infection of MKE. In addition, following subcutaneous RhCMV challenge at 8 weeks postvaccination, animals vaccinated with MVA-RhUL128C showed reduced plasma viral loads. These results indicate that MVA expressing the RhUL128C induces NAb inhibiting RhCMV entry into both Epi/EC and fibroblasts and limits RhCMV replication in RM. This novel approach is the first step in developing a prophylactic HCMV vaccine designed to interfere with virus entry into major cell types permissive for viral replication, a required property of an effective vaccine.


2013 ◽  
Vol 65 (12) ◽  
pp. 901-904 ◽  
Author(s):  
Qing Deng ◽  
Huiling Zhang ◽  
Ruirui Xiang ◽  
Zhenwu Zhang ◽  
Fei Ling ◽  
...  

2011 ◽  
Vol 73 (9) ◽  
pp. 883-895 ◽  
Author(s):  
Di Yan Li ◽  
Huai Liang Xu ◽  
David Glenn Smith ◽  
An Chun Cheng ◽  
Jessica Satkoski Trask ◽  
...  

2018 ◽  
Vol 92 (9) ◽  
Author(s):  
Diane Carnathan ◽  
Benton Lawson ◽  
Joana Yu ◽  
Kalpana Patel ◽  
James M. Billingsley ◽  
...  

ABSTRACT Pathogenic human immunodeficiency virus (HIV)/simian immunodeficiency virus (SIV) infection of humans and rhesus macaques (RMs) induces persistently high production of type I interferon (IFN-I), which is thought to contribute to disease progression. To elucidate the specific role of interferon alpha (IFN-α) in SIV pathogenesis, 12 RMs were treated prior to intravenous (i.v.) SIV mac239 infection with a high or a low dose of an antibody (AGS-009) that neutralizes most IFN-α subtypes and were compared with six mock-infused, SIV-infected controls. Plasma viremia was measured postinfection to assess the effect of IFN-α blockade on virus replication, and peripheral blood and lymphoid tissue samples were analyzed by immunophenotypic staining. Consistent with the known antiviral effect of IFN-I, high-dose AGS-009 treatment induced a modest increase in acute-phase viral loads versus controls. Four out of 6 RMs receiving a high dose of AGS-009 also experienced an early decline in CD4 + T cell counts that was associated with progression to AIDS. Interestingly, 50% of the animals treated with AGS-009 (6/12) developed AIDS within 1 year of infection compared with 17% (1/6) of untreated controls. Finally, blockade of IFN-α decreased the levels of activated CD4 + and CD8 + T cells, as well as B cells, as measured by PD-1 and/or Ki67 expression. The lower levels of activated lymphocytes in IFN-α-blockaded animals supports the hypothesis that IFN-α signaling contributes to lymphocyte activation during SIV infection and suggests that this signaling pathway is involved in controlling virus replication during acute infection. The potential anti-inflammatory effect of IFN-α blockade should be explored as a strategy to reduce immune activation in HIV-infected individuals. IMPORTANCE Interferon alpha (IFN-α) is a member of a family of molecules (type I interferons) that prevent or limit virus infections in mammals. However, IFN-α production may contribute to the chronic immune activation that is thought to be the primary cause of immune decline and AIDS in HIV-infected patients. The study presented here attempts to understand the contribution of IFN-α to the natural history and progression of SIV infection of rhesus macaques, the primary nonhuman primate model system for testing hypotheses about HIV infection in humans. Here, we show that blockade of IFN-α action promotes lower chronic immune activation but higher early viral loads, with a trend toward faster disease progression. This study has significant implications for new treatments designed to impact the type I interferon system.


2019 ◽  
Vol 164 (5) ◽  
pp. 1353-1360
Author(s):  
Zhi-Qiang Jiang ◽  
Xu-Rong Yao ◽  
Hang Yu ◽  
Yue-Er Lu ◽  
Bei-Lei Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document