scholarly journals Protein signature of human skin fibroblasts allows the study of the molecular etiology of rare neurological diseases

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Andreas Hentschel ◽  
Artur Czech ◽  
Ute Münchberg ◽  
Erik Freier ◽  
Ulrike Schara-Schmidt ◽  
...  

Abstract Background The elucidation of pathomechanisms leading to the manifestation of rare (genetically caused) neurological diseases including neuromuscular diseases (NMD) represents an important step toward the understanding of the genesis of the respective disease and might help to define starting points for (new) therapeutic intervention concepts. However, these “discovery studies” are often limited by the availability of human biomaterial. Moreover, given that results of next-generation-sequencing approaches frequently result in the identification of ambiguous variants, testing of their pathogenicity is crucial but also depending on patient-derived material. Methods Human skin fibroblasts were used to generate a spectral library using pH8-fractionation of followed by nano LC-MS/MS. Afterwards, Allgrove-patient derived fibroblasts were subjected to a data independent acquisition approach. In addition, proteomic signature of an enriched nuclear protein fraction was studied. Proteomic findings were confirmed by immunofluorescence in a muscle biopsy derived from the same patient and cellular lipid homeostasis in the cause of Allgrove syndrome was analysed by fluorescence (BODIPY-staining) and coherent anti-Stokes Raman scattering (CARS) microscopy. Results To systematically address the question if human skin fibroblasts might serve as valuable biomaterial for (molecular) studies of NMD, we generated a protein library cataloguing 8280 proteins including a variety of such linked to genetic forms of motoneuron diseases, congenital myasthenic syndromes, neuropathies and muscle disorders. In silico-based pathway analyses revealed expression of a diversity of proteins involved in muscle contraction and such decisive for neuronal function and maintenance suggesting the suitability of human skin fibroblasts to study the etiology of NMD. Based on these findings, next we aimed to further demonstrate the suitability of this in vitro model to study NMD by a use case: the proteomic signature of fibroblasts derived from an Allgrove-patient was studied. Dysregulation of paradigmatic proteins could be confirmed in muscle biopsy of the patient and protein-functions could be linked to neurological symptoms known for this disease. Moreover, proteomic investigation of nuclear protein composition allowed the identification of protein-dysregulations according with structural perturbations observed in the muscle biopsy. BODIPY-staining on fibroblasts and CARS microscopy on muscle biopsy suggest altered lipid storage as part of the underlying disease etiology. Conclusions Our combined data reveal that human fibroblasts may serve as an in vitro system to study the molecular etiology of rare neurological diseases exemplified on Allgrove syndrome in an unbiased fashion.

2020 ◽  
Author(s):  
Andreas Hentschel ◽  
Artur Czech ◽  
Ute Münchberg ◽  
Erik Freier ◽  
Ulrike Schara-Schmidt ◽  
...  

Abstract Background: The elucidation of pathomechanisms leading to the manifestation of rare (genetically caused) neurological diseases including neuromuscular diseases (NMD) represents an important step toward the understanding of the genesis of the respective disease and might help to define starting points for (new) therapeutic intervention concepts. However, these “discovery studies” are often limited by the availability of human biomaterial. Moreover, given that results of next-generation-sequencing approaches frequently result in the identification of ambiguous variants, testing of their pathogenicity is crucial but also depending on patient-derived material. Methods: Human skin fibroblasts were used to generate a spectral library using pH8-fractionation of followed by nano LC-MS/MS. Afterwards, Allgrove-patient derived fibroblasts were subjected to a data independent acquisition approach (DIA). In addition, proteomic signature of an enriched nuclear protein fraction was studied. Proteomic findings were confirmed by immunofluorescence in a muscle biopsy derived from the same patient and cellular lipid homeostasis in the cause of Allgrove syndrome was analysed by fluorescence (BODIPY-staining) and coherent anti-Stokes Raman scattering (CARS) microscopy. Results: To systematically address the question if human skin fibroblasts might serve as valuable biomaterial for (molecular) studies of NMD, we generated a protein library cataloguing 8280 proteins including a variety of such linked to genetic forms of motoneuron diseases, congenital myasthenic syndromes, neuropathies and muscle disorders. In silico-based pathway analyses revealed expression of a diversity of proteins involved in muscle contraction and such decisive for neuronal function and maintenance suggesting the suitability of human skin fibroblasts to study the etiology of NMD. Based on these findings, next we aimed to further demonstrate the suitability of this in vitro model to study NMD by a use case: the proteomic signature of fibroblasts derived from an Allgrove-patient was studied. Dysregulation of paradigmatic proteins could be confirmed in muscle biopsy of the patient and protein-functions could be linked to neurological symptoms known for this disease. Moreover, proteomic investigation of nuclear protein composition allowed the identification of protein-dysregulations according with structural perturbations observed in the muscle biopsy. BODIPY-staining on fibroblasts and CARS microscopy on muscle biopsy suggest altered lipid storage as part of the underlying disease etiology. Conclusions: our combined data reveal that human fibroblasts may serve as an in vitro system to study the molecular etiology of rare neurological diseases exemplified on Allgrove syndrome in an unbiased fashion.


2020 ◽  
Author(s):  
Andreas Hentschel ◽  
Artur Czech ◽  
Ute Münchberg ◽  
Erik Freier ◽  
Ulrike Schara-Schmidt ◽  
...  

Abstract Background: The elucidation of pathomechanisms leading to the manifestation of rare (genetically caused) neurological diseases including neuromuscular diseases (NMD) represents an important step toward the understanding of the genesis of the respective disease and might help to define starting points for (new) therapeutic intervention concepts. However, these “discovery studies” are often limited by the availability of human biomaterial. Moreover, given that results of next-generation-sequencing approaches frequently result in the identification of ambiguous variants, testing of their pathogenicity is crucial but also depending on patient-derived material. Results: To systematically address the question if human skin fibroblasts might serve as valuable biomaterial for (molecular) studies of NMD, using proteomic profiling, we generated a protein library by decreasing protein complexity via pH8-based sample fractionation: cataloguing of 8280 proteins revealed the expression of a variety of such linked to genetic forms of motoneuron diseases, congenital myasthenic syndromes, neuropathies and muscle disorders. In silico-based pathway analyses revealed expression of a variety of proteins involved in muscle contraction and such decisive for neuronal function and maintenance suggesting the suitability of human skin fibroblasts to study the etiology of NMD. Based on these findings, next we aimed to further demonstrate the suitability of this in vitro model to study NMD by a use case: utilizing a data independent acquisition approach, the proteomic signature of whole protein extracts of fibroblasts derived from an Allgrove-patient was studied. Paradigmatic dysregulated proteins were confirmed in muscle biopsy of the patient and protein-functions could be linked to neurological symptoms known for this disease. Moreover, protoemic investigation of nuclear protein composition allowed the identification of protein-dysregulations according with structural perturbations observed in the muscle biopsy. As proteomic data suggested a perturbed lipid homeostasis, BODIPY-staining was performed on fibroblasts and coherent anti-stokes Raman scattering microscopy on muscle biopsy. Results of both investigations suggest altered lipid storage as part of the underlying disease-etiology. Conclusions: our combined data reveal that human fibroblasts may serve as an in vitro system to study the molecular etiology of rare neurological diseases exemplified on Allgrove syndrome in an unbiased fashion.


1984 ◽  
Vol 12 (2) ◽  
pp. 89-97
Author(s):  
Graham R. Elliott ◽  
H.E. Amos ◽  
James W. Bridges

The rate of growth of normal human skin fibroblasts was inhibited in a dose related, reversible, fashion by practolol (N-4-(2-hydroxy)-3 (1-methyl)-aminopropoxyphenylacetamine) (ID50 1.35 ± 0.14 x 10-3M), propranolol (1-(isopropylamino)-3(1-naphthyl-oxy)-2-propranolol) (ID50 0.145 ± 0.02 x 10-3M) and paracetamol (N-(4-hydroxyphenyl) acetamide) (ID50 0.85 ± 0.2 x 10-3M). Skin fibroblasts isolated from a psoriasis patient were more sensitive towards practolol (ID50 0.48 ± 0.14 x 10-3M) and propranolol (ID50 0.032 ± 0.002 x 10-3M), but less sensitive towards paracetamol (ID50 1.3 ± 0.07 x 10-3M). In vitro generated metabolites of practolol, using normal or Arochlor 1254-pretreated hamster liver preparations, and structural analogues of practolol had no effect upon the growth of either cell type.


PLoS ONE ◽  
2015 ◽  
Vol 10 (5) ◽  
pp. e0126546 ◽  
Author(s):  
Dino Demirovic ◽  
Carine Nizard ◽  
Suresh I. S. Rattan

2017 ◽  
Vol 37 (2) ◽  
Author(s):  
Dong Yang ◽  
Jun-hua Xu ◽  
Ren-jie Shi

Wound healing is the main problem in the therapy of anal fistula (AF). Daphne genkwa root has been traditionally used as an agent to soak sutures in operation of AF patients, but its function in wound healing remains largely unclear. The aim of the present study was to illuminate mechanisms of D. genkwa root treatment on AF. In the present study, 60 AF patients after surgery were randomly divided into two groups, external applied with or without the D. genkwa extractive. Wound healing times were compared and granulation tissues were collected. In vitro, we constructed damaged human skin fibroblasts (HSFs) with the treatment of TNF-α (10 μg/ml). Cell Count Kit-8 (CCK-8) and flow cytometry analysis were used to determine the effects of D. genkwa root extractive on cell viability, cell cycle and apoptosis of damaged HSFs. Furthermore, protein levels of TGF-β, COL1A1, COL3A1, Timp-1, matrix metalloproteinase (MMP)-3 (MMP-3) and MEK/ERK signalling pathways were investigated both in vivo and in vitro. Results showed that D. genkwa root extractive greatly shortens the wound healing time in AF patients. In granulation tissues and HSFs, treatment with the extractive significantly elevated the expressions of COL1A1, COL3A1, Timp-1, c-fos and Cyclin D1, while reduced the expression of MMP-3. Further detection presented that MEK/ERK signalling was activated after the stimulation of extractive in HSFs. Our study demonstrated that extractive from D. genkwa root could effectively improve wound healing in patients with AF via the up-regulation of fibroblast proliferation and expressions of COL1A1 and COL3A1.


1989 ◽  
Vol 180 (1) ◽  
pp. 84-93 ◽  
Author(s):  
H.Peter Rodemann ◽  
Klaus Bayreuther ◽  
Pal I. Francz ◽  
Klaus Dittmann ◽  
Mario Albiez

Sign in / Sign up

Export Citation Format

Share Document