cars microscopy
Recently Published Documents


TOTAL DOCUMENTS

274
(FIVE YEARS 26)

H-INDEX

33
(FIVE YEARS 3)

Author(s):  
Aleksandra Borek-Dorosz ◽  
Marek Grosicki ◽  
Jakub Dybas ◽  
Ewelina Matuszyk ◽  
Marko Rodewald ◽  
...  

AbstractEosinophils (Eos) play an important role in the immune system’s response releasing several inflammatory factors and contributing to allergic rhinitis, asthma, or atopic dermatitis. Since Eos have a relatively short lifetime after isolation from blood, usually eosinophilic cell line (EoL-1) is used to study mechanisms of their activation and to test therapies. In particular, EoL-1 cells are examined in terms of signalling pathways of the inflammatory response manifested by the presence of lipid bodies (LBs). Here we examined the differences in response to inflammation modelled by various factors, between isolated human eosinophils and EoL-1 cells, as manifested in the number and chemical composition of LBs. The analysis was performed using fluorescence, Raman, and coherent anti-Stokes Raman scattering (CARS) microscopy, which recognised the inflammatory process in the cells, but it is manifested slightly differently depending on the method used. We showed that unstimulated EoL-1 cells, compared to isolated eosinophils, contained more LBs, displayed different nucleus morphology and did not have eosinophilic peroxidase (EPO). In EoL-1 cells stimulated with various proinflammatory agents, including butyric acid (BA), liposaccharide (LPS), or cytokines (IL-1β, TNF-α), an increased production of LBs with a various degree of lipid unsaturation was observed in spontaneous Raman spectra. Furthermore, stimulation of EoL-1 cells resulted in alterations of the LBs morphology. In conclusion, a level of lipid unsaturation and eosinophilic peroxidase as well as LBs distribution among cell population mainly accounted for the biochemistry of eosinophils upon inflammation.


Author(s):  
Dale R Boorman ◽  
Iestyn Pope ◽  
Francesco Masia ◽  
Wolfgang Werner Langbein ◽  
Steve Hood ◽  
...  

Author(s):  
Kangwen Yang ◽  
Lizhong Huo ◽  
Jianpeng Ao ◽  
Qingting Wang ◽  
Qiang Hao ◽  
...  

Plants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 589
Author(s):  
Fionna M. D. Samuels ◽  
Dominik G. Stich ◽  
Remi Bonnart ◽  
Gayle M. Volk ◽  
Nancy E. Levinger

Cryoprotectants allow cells to be frozen in liquid nitrogen and cryopreserved for years by minimizing the damage that occurs in cooling and warming processes. Unfortunately, how the specific cryoprotectants keep the cells viable through the cryopreservation process is not entirely evident. This contributes to the arduous process of optimizing cryoprotectant formulations for each new cell line or species that is conserved. Coherent anti-Stokes Raman scattering microscopy facilitates the visualization of deuterated cryoprotectants within living cells. Using this technique, we directly imaged the location of fully deuterated dimethyl sulfoxide (d6-DMSO), the deuterated form of a commonly used cryoprotectant, DMSO, within rice suspension cells. This work showed that d6-DMSO does not uniformly distribute throughout the cells, rather it enters the cell and sequesters within organelles, changing our understanding of how DMSO concentration varies within the cellular compartments. Variations in cryoprotectant concentration within different cells and tissues will likely lead to differing protection from liquid nitrogen exposure. Expanding this work to include different cryoprotectants and mixtures of cryoprotectants is vital to create a robust understanding of how the distributions of these molecules change when different cryoprotectants are used.


Author(s):  
Marko Rodewald ◽  
Hyeonsoo Bae ◽  
Sophie Huschke ◽  
Tobias Meyer‐Zedler ◽  
Michael Schmitt ◽  
...  
Keyword(s):  

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Andreas Hentschel ◽  
Artur Czech ◽  
Ute Münchberg ◽  
Erik Freier ◽  
Ulrike Schara-Schmidt ◽  
...  

Abstract Background The elucidation of pathomechanisms leading to the manifestation of rare (genetically caused) neurological diseases including neuromuscular diseases (NMD) represents an important step toward the understanding of the genesis of the respective disease and might help to define starting points for (new) therapeutic intervention concepts. However, these “discovery studies” are often limited by the availability of human biomaterial. Moreover, given that results of next-generation-sequencing approaches frequently result in the identification of ambiguous variants, testing of their pathogenicity is crucial but also depending on patient-derived material. Methods Human skin fibroblasts were used to generate a spectral library using pH8-fractionation of followed by nano LC-MS/MS. Afterwards, Allgrove-patient derived fibroblasts were subjected to a data independent acquisition approach. In addition, proteomic signature of an enriched nuclear protein fraction was studied. Proteomic findings were confirmed by immunofluorescence in a muscle biopsy derived from the same patient and cellular lipid homeostasis in the cause of Allgrove syndrome was analysed by fluorescence (BODIPY-staining) and coherent anti-Stokes Raman scattering (CARS) microscopy. Results To systematically address the question if human skin fibroblasts might serve as valuable biomaterial for (molecular) studies of NMD, we generated a protein library cataloguing 8280 proteins including a variety of such linked to genetic forms of motoneuron diseases, congenital myasthenic syndromes, neuropathies and muscle disorders. In silico-based pathway analyses revealed expression of a diversity of proteins involved in muscle contraction and such decisive for neuronal function and maintenance suggesting the suitability of human skin fibroblasts to study the etiology of NMD. Based on these findings, next we aimed to further demonstrate the suitability of this in vitro model to study NMD by a use case: the proteomic signature of fibroblasts derived from an Allgrove-patient was studied. Dysregulation of paradigmatic proteins could be confirmed in muscle biopsy of the patient and protein-functions could be linked to neurological symptoms known for this disease. Moreover, proteomic investigation of nuclear protein composition allowed the identification of protein-dysregulations according with structural perturbations observed in the muscle biopsy. BODIPY-staining on fibroblasts and CARS microscopy on muscle biopsy suggest altered lipid storage as part of the underlying disease etiology. Conclusions Our combined data reveal that human fibroblasts may serve as an in vitro system to study the molecular etiology of rare neurological diseases exemplified on Allgrove syndrome in an unbiased fashion.


2021 ◽  
Author(s):  
Harald Giessen ◽  
Heiko Linnenbank ◽  
Tobias Steinle ◽  
Florian Mörz ◽  
Moritz Floess ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document