scholarly journals An efficient computational method for predicting drug-target interactions using weighted extreme learning machine and speed up robot features

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Ji-Yong An ◽  
Fan-Rong Meng ◽  
Zi-Ji Yan

Abstract Background Prediction of novel Drug–Target interactions (DTIs) plays an important role in discovering new drug candidates and finding new proteins to target. In consideration of the time-consuming and expensive of experimental methods. Therefore, it is a challenging task that how to develop efficient computational approaches for the accurate predicting potential associations between drug and target. Results In the paper, we proposed a novel computational method called WELM-SURF based on drug fingerprints and protein evolutionary information for identifying DTIs. More specifically, for exploiting protein sequence feature, Position Specific Scoring Matrix (PSSM) is applied to capturing protein evolutionary information and Speed up robot features (SURF) is employed to extract sequence key feature from PSSM. For drug fingerprints, the chemical structure of molecular substructure fingerprints was used to represent drug as feature vector. Take account of the advantage that the Weighted Extreme Learning Machine (WELM) has short training time, good generalization ability, and most importantly ability to efficiently execute classification by optimizing the loss function of weight matrix. Therefore, the WELM classifier is used to carry out classification based on extracted features for predicting DTIs. The performance of the WELM-SURF model was evaluated by experimental validations on enzyme, ion channel, GPCRs and nuclear receptor datasets by using fivefold cross-validation test. The WELM-SURF obtained average accuracies of 93.54, 90.58, 85.43 and 77.45% on enzyme, ion channels, GPCRs and nuclear receptor dataset respectively. We also compared our performance with the Extreme Learning Machine (ELM), the state-of-the-art Support Vector Machine (SVM) on enzyme and ion channels dataset and other exiting methods on four datasets. By comparing with experimental results, the performance of WELM-SURF is significantly better than that of ELM, SVM and other previous methods in the domain. Conclusion The results demonstrated that the proposed WELM-SURF model is competent for predicting DTIs with high accuracy and robustness. It is anticipated that the WELM-SURF method is a useful computational tool to facilitate widely bioinformatics studies related to DTIs prediction.

2020 ◽  
Author(s):  
An Ji Yong ◽  
Meng Fan-Rong ◽  
Yan Zi-Ji

Abstract Background: Prediction of novel Drug–Target interactions (DTIs) plays an important role in discovering new drug candidates and finding new proteins to target. In consideration of the time-consuming and expensive of experimental methods. Therefore, it is a challenging task that how to develop efficient computational approaches for the accurate predicting potential associations between drug and target. Results: In the paper, we proposed a novel computational method called WELM-SURF based on drug fingerprints and protein evolutionary information for identifying DTIs. More specifically, for exploiting protein sequence feature, Position Specific Scoring Matrix (PSSM) is applied to capturing protein evolutionary information and Speed up robot features (SURF) is employed to extract sequence key feature from PSSM. For drug fingerprints, the chemical structure of molecular substructure fingerprints was used to represent drug as feature vector. Take account of the advantage that the Weighted Extreme Learning Machine (WELM) has short training time, good generalization ability, and most importantly ability to efficiently execute classification by optimizing the loss function of weight matrix. Therefore, the WELM classifier is used to carry out classification based on extracted features for predicting DTIs. The performance of the WELM-SURF model was evaluated by experimental validations on enzyme, ion channel, GPCRs and nuclear receptor datasets by using fivefold cross-validation test. The WELM-SURF obtained average accuracies of 93.54%, 90.58%, 85.43% and 77.45% on enzyme, ion channels, GPCRs and nuclear receptor dataset respectively. We also compared our performance with the Extreme Learning Machine (ELM), the state-of-the-art Support Vector Machine (SVM) on enzyme and ion channels dataset and other exiting methods on four datasets. By comparing with experimental results, the performance of WELM-SURF is significantly better than that of ELM, SVM and other previous methods in the domain.Conclusion: The results demonstrated that the proposed WELM-SURF model is competent for predicting DTIs with high accuracy and robustness. It is anticipated that the WELM-SURF method is a useful computational tool to facilitate widely bioinformatics studies related to DTIs prediction.


2020 ◽  
Author(s):  
Ji Yong An ◽  
Fan-Rong Meng ◽  
Zi-Ji Yan

Abstract Background: Prediction of novel Drug–Target interactions (DTIs) plays an important role in discovering new drug candidates and finding new proteins to target. In consideration of the time-consuming and expensive of experimental methods. Therefore, it is a challenging task that how to develop efficient computational approaches for the accurate predicting potential associations between drug and target.Results: In the paper, we proposed a novel computational method called WELM-SURF based on drug fingerprints and protein evolutionary information for identifying DTIs. More specifically, for exploiting protein sequence feature, Position Specific Scoring Matrix (PSSM) is applied to capturing protein evolutionary information and Speed up robot features (SURF) is employed to extract sequence key feature from PSSM. For drug fingerprints, the chemical structure of molecular substructure fingerprints was used to represent drug as feature vector. Take account of the advantage that the Weighted Extreme Learning Machine (WELM) has short training time, good generalization ability, and most importantly ability to efficiently execute classification by optimizing the loss function of weight matrix. Therefore, the WELM classifier is used to carry out classification based on extracted features for predicting DTIs. The performance of the WELM-SURF model was evaluated by experimental validations on enzyme, ion channel, GPCRs and nuclear receptor datasets by using fivefold cross-validation test. The WELM-SURF obtained average accuracies of 93.54%, 90.58%, 85.43% and 77.45% on enzyme, ion channels, GPCRs and nuclear receptor dataset respectively. We also compared our performance with the Extreme Learning Machine (ELM), the state-of-the-art Support Vector Machine (SVM) on enzyme and ion channels dataset and other exiting methods on four datasets. By comparing with experimental results, the performance of WELM-SURF is significantly better than that of ELM, SVM and other previous methods in the domain.Conclusion: The results demonstrated that the proposed WELM-SURF model is competent for predicting DTIs with high accuracy and robustness. It is anticipated that the WELM-SURF method is a useful computational tool to facilitate widely bioinformatics studies related to DTIs prediction.


2021 ◽  
Author(s):  
An Ji Yong ◽  
Meng Fan-Rong ◽  
Yan Zi-Ji

Abstract Background: Prediction of novel Drug–Target interactions (DTIs) plays an important role in discovering new drug candidates and finding new proteins to target. In consideration of the time-consuming and expensive of experimental methods. Therefore, it is a challenging task that how to develop efficient computational approaches for the accurate predicting potential associations between drug and target. Results: In the paper, we proposed a novel computational method called WELM-SURF based on drug fingerprints and protein evolutionary information for identifying DTIs. More specifically, for exploiting protein sequence feature, Position Specific Scoring Matrix (PSSM) is applied to capturing protein evolutionary information and Speed up robot features (SURF) is employed to extract sequence key feature from PSSM. For drug fingerprints, the chemical structure of molecular substructure fingerprints was used to represent drug as feature vector. Take account of the advantage that the Weighted Extreme Learning Machine (WELM) has short training time, good generalization ability, and most importantly ability to efficiently execute classification by optimizing the loss function of weight matrix. Therefore, the WELM classifier is used to carry out classification based on extracted features for predicting DTIs. The performance of the WELM-SURF model was evaluated by experimental validations on enzyme, ion channel, GPCRs and nuclear receptor datasets by using fivefold cross-validation test. The WELM-SURF obtained average accuracies of 93.54%, 90.58%, 85.43% and 77.45% on enzyme, ion channels, GPCRs and nuclear receptor dataset respectively. We also compared our performance with the Extreme Learning Machine (ELM), the state-of-the-art Support Vector Machine (SVM) on enzyme and ion channels dataset and other exiting methods on four datasets. By comparing with experimental results, the performance of WELM-SURF is significantly better than that of ELM, SVM and other previous methods in the domain.Conclusion: The results demonstrated that the proposed WELM-SURF model is competent for predicting DTIs with high accuracy and robustness. It is anticipated that the WELM-SURF method is a useful computational tool to facilitate widely bioinformatics studies related to DTIs prediction.


2020 ◽  
Author(s):  
Ji-Yong An ◽  
Yong Zhou ◽  
Zi-Ji Yan ◽  
Yu-Jun Zhao

Abstract Background: Self-interaction Proteins (SIPs) play a key role in a variety of biological activities of organisms. In consideration of the time-consuming and expensive of high-throughput methods, and the number of positive and negative samples is very imbalanced in SIPs datasets. How to develop accurate and efficient computational approaches for assisting and accelerating the study of identifying SIPs is a challenging task.Results:In the work, we proposed a new computational method called WELM-SURF for predicting SIPs. More specifically, for exploiting protein sequence feature, Position Specific Scoring Matrix (PSSM) is applied to capturing protein evolutionary information and Speed up robot features (SURF) is employed to extract key feature of protein sequence from PSSM. Take account of the advantage that the Weighted Extreme Learning Machine (WELM) has short training time, good generalization ability, and most importantly ability to efficiently execute classification for imbalanced class samples by optimizing the loss function of weight matrix. Therefore, the WELM classifier is used to perform classification based on extracted features for predicting SIPs. A large number of experiments show that the average accuracy of WELM-SURF is 95.25% and 98.79% on yeast and human dataset, respectively. We also compared our performance with Extreme Learning Machine (ELM), the state-of-the-art Support Vector Machine (SVM), and other existing methods. Compared with the experimental results, the performance of WELM-SURF in this domain is obviously better than ELM, SVM and other previous methods.Conclusion: These experimental results proved that the proposed WELM-SURF model is competent for predicting SIPs with high accuracy and robustness. It is anticipated that the WELM-SURF method is a useful computational tool to facilitate widely bioinformatics studies related to SIPs prediction. For further encouraging future proteomics research, we developed a freely available web server called WELM-SURF-SIPs. It is available at http://219.219.62.123:8888/WELMSURF/ and includes SIPs datasets and source code.


2021 ◽  
Author(s):  
JinXuan Zhai ◽  
Ji-Yong An

Abstract Background:Protein–protein interactions (PPIs) are involved in a number of cellular processes and play a key role inside cells. The prediction of PPIs is an important task towards the understanding of many bioinformatics functions and applications, such as predicting protein functions, gene-disease associations and disease-drug associations. Given that high-throughput methods are expensive and time-consuming, it is a challenging task to develop efficient and accurate computational methods for predicting PPIs .Results:In the study, a novel computational approach named WELM-SURF was developed to predict PPIs. The proposed method used Position Specific Scoring Matrix (PSSM) to capture protein evolutionary information and employed Speed Up Robot Features (SURF) to extract key features from PSSM of protein sequence. Weighted Extreme Learning Machine (WELM) is featured with short training time and great ability to execute classification efficiently by optimizing the loss function of weight matrix. Therefore, WELM classifier was used to carry out classification. The cross-validation results show that WELM-SURF obtains 97.36% and 95.12% of average accuracy on yeast and human dataset, respectively. The prediction ability of WELM-SURF was also compared with those of ELM-SRUF, SVM-SURF and other existing approaches. The comparison results further verify that WELM-SURF is obviously better than other methods.Conclusion:The experimental results proved that the WELM-SURF method is very useful for predicting PPIs and can also be applied to other bioinformatics studies of protein.


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2615 ◽  
Author(s):  
Yang Du ◽  
Ke Yan ◽  
Zixiao Ren ◽  
Weidong Xiao

A maximum power point tracker (MPPT) should be designed to deal with various weather conditions, which are different from region to region. Customization is an important step for achieving the highest solar energy harvest. The latest development of modern machine learning provides the possibility to classify the weather types automatically and, consequently, assist localized MPPT design. In this study, a localized MPPT algorithm is developed, which is supported by a supervised weather-type classification system. Two classical machine learning technologies are employed and compared, namely, the support vector machine (SVM) and extreme learning machine (ELM). The simulation results show the outperformance of the proposed method in comparison with the traditional MPPT design.


Sign in / Sign up

Export Citation Format

Share Document