scholarly journals CD151 drives cancer progression depending on integrin α3β1 through EGFR signaling in non-small cell lung cancer

Author(s):  
Jianjie Zhu ◽  
Tingting Cai ◽  
Jieqi Zhou ◽  
Wenwen Du ◽  
Yuanyuan Zeng ◽  
...  

Abstract Background Tetraspanins CD151, a transmembrane 4 superfamily protein, has been identified participating in the initiation of a variety of cancers. However, the precise function of CD151 in non-small cell lung cancer (NSCLC) remains unclear. Here, we addressed the pro-tumoral role of CD151 in NSCLC by targeting EGFR/ErbB2 which favors tumor proliferation, migration and invasion. Methods First, the mRNA expression levels of CD151 in NSCLC tissues and cell lines were measured by RT-PCR. Meanwhile, CD151 and its associated proteins were analyzed by western blotting. The expression levels of CD151 in NSCLC samples and its paired adjacent lung tissues were then verified by Immunohistochemistry. The protein interactions are evaluated by co-immunoprecipitation. Flow cytometry was applied to cell cycle analysis. CCK-8, EdU Incorporation, and clonogenic assays were used to analyze cell viability. Wound healing, transwell migration, and matrigel invasion assays were utilized to assess the motility of tumor cells. To investigate the role of CD151 in vivo, lung carcinoma xenograft mouse model was applied. Results High CD151 expression was identified in NSCLC tissues and cell lines, and its high expression was significantly associated with poor prognosis of NSCLC patients. Further, knockdown of CD151 in vitro inhibited tumor proliferation, migration, and invasion. Besides, inoculation of nude mice with CD151-overexpressing tumor cells exhibited substantial tumor proliferation compared to that in control mice which inoculated with vector-transfected tumor cells. Noteworthy, we found that overexpression of CD151 conferred cell migration and invasion by interacting with integrins. We next sought to demonstrate that CD151 regulated downstream signaling pathways via activation of EGFR/ErbB2 in NSCLC cells. Therefore, we infer that CD151 probably affects the sensitivity of NSCLC in response to anti-cancer drugs. Conclusions Based on these results, we demonstrated a new mechanism of CD151-mediated tumor progression by targeting EGFR/ErbB2 signaling pathway, by which CD151 promotes NSCLC proliferation, migration, and invasion, which may considered as a potential target of NSCLC treatment.

2020 ◽  
Author(s):  
Dan Wang ◽  
Shufang Yu ◽  
Shasha Yi ◽  
Sichan Liu

Abstract Background: Non-small cell lung cancer (NSCLC) is the most common malignant tumor, and its recurrence and metastasis are the main causes of death. Recently, there are evidences that tumor derived exosomes play an important role in the occurrence and development of non-small cell lung cancer.Material/Methods: First, miR-185-5p and RAB35 expression in tumor tissues, paracancerous healthy tissues, lung cancer cell lines and normal bronchial epithelial cell line were detected. Then, miR-185-5p and RAB35 were over-expressed/knocked down to study their effects on A549 cells and H2170 cells proliferation, migration and invasion . Next, bioinformatics analysis and luciferase reporter gene analysis verified the targeting relationships of miR-185-5p and RAB35 , respectively. Finally, the exosomes secreted by tumor cells with RAB35 gene downregulated or miR-185-5p overexpression were co cultured with their parent cells to verify the regulatory effect of RAB35 on the secretion and function of exosomes.Results: The miR-185-5p expression was downregulated, while RAB35 expression was prominently upregulated in NSCLC tissues and cell lines. Moreover, miR-185-5p overexpression or RAB35 downregulated suppressed cells proliferation, migration and invasion. Furthermore, we clarified that RAB35 was a direct target of miR-185-5p. Additionally, exosomes derived from tumor cells could restore cells proliferation, migration and invasion, while exosomes secreted by tumor cells with RAB35 downregulated or mR-185-5p overexpression lose the ability to restore cells proliferation, migration and invasion.Conclusions: Our findings indicate that miR-185-5p targets RAB35 gene to regulate tumor cell-derived exosomes-mediated proliferation, migration and invasion of NSCLC cells.


2020 ◽  
Vol 29 (1) ◽  
pp. 25-37
Author(s):  
Wei-Xin Zhao ◽  
Yan-Lei Tang ◽  
Wei-Hua Wang ◽  
Min-Wei Bao

BACKGROUND: Non-small cell lung cancer (NSCLC) is the most common malignant tumor worldwide. This work focuses on investigating the role of circ_0000353 in NSCLC and its potential mechanism of action. METHODS: The expression levels of circ_0000353 and miR-411-5p in NSCLC and their matched normal lung tissues were detected by real-time PCR (RT-PCR). The correlation between the circ_0000353 expression and the clinicopathological parameters of NSCLC patients was also analyzed. CCK-8, BrdU and colony formation assays were adopted to detect the role of circ_0000353 in the proliferation of NSCLC cells. The metastasis of NSCLC cells was measured by Transwell assay. The dual-luciferase reporter gene assay was used to confirm the targeting relationship between circ_0000353 and miR-411-5p. The expression level of FOXO1 was detected by western blot. RESULTS: Circ_0000353 was significantly down-regulated in NSCLC tissues and cell lines, and the decreased expression was significantly linked to the increased clinical stage, larger tumor volume, and metastasis. The circ_0000353 over-expression restrained the proliferation, migration, and invasion of NSCLC cells in vitro. Additionally, up-regulation of miR-411-5p was observed in NSCLC tissues and cell lines, and luciferase assay and RT-PCR assay showed that circ_0000353 over-expression could target miR-411-5p and suppress its expression. Further studies confirmed that circ_0000353 and miR-411-5p modulated the FOXO1 expression. CONCLUSION: Circ_0000353 repressed the proliferation, migration, and invasion of NSCLC cells via inhibition of miR-411-5p and up-regulation of FOXO1.


2019 ◽  
Vol 22 (4) ◽  
pp. 238-244 ◽  
Author(s):  
Gang Chen ◽  
Bo Ye

Purpose: Epithelial-to-Mesenchymal Transition (EMT) was reported to play a key role in the development of Non-Small Cell Lung Cancer (NSCLC). The process of EMT is regulated by the changes of miRNAs expression. However, it is still unknown which miRNA changed the most in the process of canceration and whether these changes played a role in tumor development. Methods: A total of 36 SCLC patients treated in our hospital between 11th, 2015 and 10th, 2017 were enrolled. The samples of cancer tissues and paracancer tissues of patients were collected and analyzed. Then, the miRNAs in normal lung cells and NSCLC cells were also analyzed. In the presence of TGF-β, we transfected the miRNA mimics or inhibitor into NSCLC cells to investigate the role of the significantly altered miRNAs in cell migration and invasion and in the process of EMT. Results: MiR-330-3p was significantly up-regulated in NSCLC cell lines and tissues and miRNA- 205 was significantly down-regulated in NSCLC cell lines and NSCLC tissues. Transfected miRNA-205 mimics or miRMA-330-3p inhibitor inhibited the migration and invasion of NCIH1975 cell and restrained TGF-β-induced EMT in NSCLC cells. Conclusion: miRNA-330-3p and miRNA-205 changed the most in the process of canceration in NSCLC. Furthermore, miR-330-3p promoted cell invasion and metastasis in NSCLC probably by promoting EMT and miR-205 could restrain NSCLC likely by suppressing EMT.


2018 ◽  
Vol 9 (5) ◽  
pp. 640-645 ◽  
Author(s):  
Bing Tong ◽  
Yan Xu ◽  
Jing Zhao ◽  
Minjiang Chen ◽  
Wei Zhong ◽  
...  

2019 ◽  
Vol 39 (5) ◽  
Author(s):  
Yunpeng Liu ◽  
Xingyu Lin ◽  
Shiyao Zhou ◽  
Peng Zhang ◽  
Guoguang Shao ◽  
...  

Abstract Background: The HOXA cluster antisense RNA 2 (HOXA-AS2) has recently been discovered to be involved in carcinogenesis in multiple cancers. However, the role and underlying mechanism of HOXA-AS2 in non-small cell lung cancer (NSCLC) yet need to be unraveled. Methods: HOXA-AS2 expression in NSCLC tissues and cell lines was detected using quantitative real-time PCR (qRT-PCR). Furthermore, the effects of HOXA-AS2 on NSCLC cell proliferation, apoptosis, migration, and invasion were assessed by MTS, flow cytometry, wound healing and transwell invasion assays, respectively. Starbase2.0 predicted and luciferase reporter and RNA immunoprecipitation (RIP) assays were used to validate the association of HOXA-AS2 and miR-520a-3p in NSCLC cells. Results: Our results revealed that HOXA-AS2 in NSCLC tissues were up-regulated and cell lines, and were associated with poor prognosis and overall survival. Further functional assays demonstrated that HOXA-AS2 knockdown significantly inhibited NSCLC cell proliferation, induced cell apoptosis and suppressed migration and invasion. Starbase2.0 predicted that HOXA-AS2 sponge miR-520a-3p at 3′-UTR, which was confirmed using luciferase reporter and RIP assays. miR-520a-3p expression was inversely correlated with HOXA-AS2 expression in NSCLC tissues. In addition, miR-520a-3p inhibitor attenuated the inhibitory effect of HOXD-AS2-depletion on cell proliferation, migration and invasion of NSCLC cells. Moreover, HOXA-AS2 could regulate HOXD8 and MAP3K2 expression, two known targets of miR-520a-3p in NSCLC. Conclusion: These findings implied that HOXA-AS2 promoted NSCLC progression by regulating miR-520a-3p, suggesting that HOXA-AS2 could serve as a therapeutic target for NSCLC.


1998 ◽  
Vol 19 (4) ◽  
pp. 606-612 ◽  
Author(s):  
Michel Bihl ◽  
Michael Tamm ◽  
Markus Nauck ◽  
Heinrich Wieland ◽  
André P. Perruchoud ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document