scholarly journals USP1-dependent RPS16 protein stability drives growth and metastasis of human hepatocellular carcinoma cells

Author(s):  
Yuning Liao ◽  
Zhenlong Shao ◽  
Yuan Liu ◽  
Xiaohong Xia ◽  
Yuanfei Deng ◽  
...  

Abstract Background Hepatocellular carcinoma (HCC) remains a medical challenge due to its high proliferation and metastasis. Although deubiquitinating enzymes (DUBs) play a key role in regulating protein degradation, their pathological roles in HCC have not been fully elucidated. Methods By using biomass spectrometry, co-immunoprecipitation, western blotting and immunofluorescence assays, we identify ribosomal protein S16 (RPS16) as a key substrate of ubiquitin-specific peptidase 1 (USP1). The role of USP1-RPS16 axis in the progression of HCC was evaluated in cell cultures, in xenograft mouse models, and in clinical observations. Results We show that USP1 interacts with RPS16. The depletion of USP1 increases the level of K48-linked ubiquitinated-RPS16, leading to proteasome-dependent RPS16 degradation. In contrast, overexpression of USP1-WT instead of USP1-C90A (DUB inactivation mutant) reduces the level of K48-linked ubiquitinated RPS16, thereby stabilizing RPS16. Consequently, USP1 depletion mimics RPS16 deficiency with respect to the inhibition of growth and metastasis, whereas transfection-enforced re-expression of RPS16 restores oncogenic-like activity in USP1-deficient HCC cells. Importantly, the high expression of USP1 and RPS16 in liver tissue is a prognostic factor for poor survival of HCC patients. Conclusions These findings reveal a previously unrecognized role for the activation of USP1-RPS16 pathway in driving HCC, which may be further developed as a novel strategy for cancer treatment.

Cancer ◽  
2002 ◽  
Vol 95 (8) ◽  
pp. 1696-1705 ◽  
Author(s):  
Paul J. Chiao ◽  
Ren Na ◽  
Jiangong Niu ◽  
Guido M. Sclabas ◽  
Qianggang Dong ◽  
...  

2020 ◽  
Vol 14 (11) ◽  
pp. 981-996
Author(s):  
Xiaobin Chi ◽  
Yi Jiang ◽  
Yongbiao Chen ◽  
Lizhi Lv ◽  
Jianwei Chen ◽  
...  

Aim: This study aimed to investigate the expression of microRNA-505 (miR-505) and explore its clinical significance, biological function and mechanisms in hepatocellular carcinoma (HCC). Methods: Expression of miR-505 was measured in 128 paired HCC tissues and five cell lines by quantitative real-time polymerase chain reaction (qRT-PCR). MTT assay, Transwell migration, invasion assays and apoptosis assay were performed to explore the functional role of miR-505. The target gene of miR-505 was assessed using the bioinformatics assay and the related signaling pathway was confirmed using western blot. Results: Expression of miR-505 in HCC serum and tissues were downregulated. The overexpression of miR-505 in HCC cells inhibited cell proliferation and metastasis, as well as enhanced cell apoptosis by directly downregulating heterogeneous nuclear ribonucleoprotein M ( HNRNPM). The activity of the Wnt/β-catenin signaling pathway was suppressed by the overexpression of miR-505 but was promoted by the upregulation of HNRNPM. Conclusion: The results suggest that the regulation of miR-505/ HNRNPM may be a novel strategy to improve the targeted therapy of HCC.


Sign in / Sign up

Export Citation Format

Share Document