scholarly journals The role of cervical collars and verbal instructions in minimising spinal movement during self-extrication following a motor vehicle collision - a biomechanical study using healthy volunteers

Author(s):  
Tim Nutbeam ◽  
Rob Fenwick ◽  
Barbara May ◽  
Willem Stassen ◽  
Jason E. Smith ◽  
...  

Abstract Background Motor vehicle collisions account for 1.3 million deaths and 50 million serious injuries worldwide each year. However, the majority of people involved in such incidents are uninjured or have injuries which do not prevent them exiting the vehicle. Self-extrication is the process by which a casualty is instructed to leave their vehicle and completes this with minimal or no assistance. Self-extrication may offer a number of patient and system-wide benefits. The efficacy of routine cervical collar application for this group is unclear and previous studies have demonstrated inconsistent results. It is unknown whether scripted instructions given to casualties on how to exit the vehicle would offer any additional utility. The aim of this study was to evaluate the effect of cervical collars and instructions on spinal movements during self-extrication from a vehicle, using novel motion tracking technology. Methods Biomechanical data on extrications were collected using Inertial Measurement Units on 10 healthy volunteers. The different extrication types examined were: i) No instructions and no cervical collar, ii) No instructions, with cervical collar, iii) With instructions and no collar, and iv) With instructions and with collar. Measurements were recorded at the cervical and lumbar spine, and in the anteroposterior (AP) and lateral (LAT) planes. Total movement, mean, standard deviation and confidence intervals are reported for each extrication type. Results Data were recorded for 392 extrications. The smallest cervical spine movements were recorded when a collar was applied and no instructions were given: mean 6.9 mm AP and 4.4 mm LAT. This also produced the smallest movements at the lumbar spine with a mean of 122 mm AP and 72.5 mm LAT. The largest overall movements were seen in the cervical spine AP when no instructions and no collar were used (28.3 mm). For cervical spine lateral movements, no collar but with instructions produced the greatest movement (18.5 mm). For the lumbar spine, the greatest movement was recorded when instructions were given and no collar was used (153.5 mm AP, 101.1 mm LAT). Conclusions Across all participants, the most frequently occurring extrication method associated with the least movement was no instructions, with a cervical collar in situ.

2021 ◽  
Author(s):  
Tim Nutbeam ◽  
Rob Fenwick ◽  
Barbara May ◽  
Willem Stassen ◽  
Jason Smith ◽  
...  

Abstract BackgroundMotor vehicle collisions are a common cause of death and serious injury. Many casualties will remain in their vehicle following a collision. Trapped patients have more injuries and are more likely to die than their untrapped counterparts. Current extrication methods are time consuming and have a focus on movement minimisation and mitigation. The optimal extrication strategy and the effect this extrication method has on spinal movement is unknown. The aim of this study was to evaluate the movement at the cervical and lumbar spine for four commonly utilised extrication techniques. MethodsBiomechanical data was collected using inertial Measurement Units on 6 healthy volunteers. The extrication types examined were: roof removal, b-post rip, rapid removal and self-extrication. Measurements were recorded at the cervical and lumbar spine, and in the anteroposterior (AP) and lateral (LAT) planes. Total movement (travel), maximal movement, mean, standard deviation and confidence intervals are reported for each extrication type.ResultsData from a total of 230 extrications were collected for analysis. The smallest maximal and total movement (travel) were seen when the volunteer self-extricated (AP max = 2.6mm, travel 4.9mm). The largest maximal movement and travel were seen in rapid extrication extricated (AP max = 6.21mm, travel 20.51 mm). The differences between self-extrication and all other methods were significant (p<0.001), small non-significant differences existed between roof removal, b-post rip and rapid removal.Self-extrication was significantly quicker than the other extrication methods (mean 6.4s).ConclusionsIn healthy volunteers, self-extrication is associated with the smallest spinal movement and the fastest time to complete extrication. Rapid, B-post rip and roof off extrication types are all associated with similar movements and time to extrication in prepared vehicles.


Author(s):  
Tim Nutbeam ◽  
Rob Fenwick ◽  
Barbara May ◽  
Willem Stassen ◽  
Jason E. Smith ◽  
...  

Abstract Background Motor vehicle collisions are a common cause of death and serious injury. Many casualties will remain in their vehicle following a collision. Trapped patients have more injuries and are more likely to die than their untrapped counterparts. Current extrication methods are time consuming and have a focus on movement minimisation and mitigation. The optimal extrication strategy and the effect this extrication method has on spinal movement is unknown. The aim of this study was to evaluate the movement at the cervical and lumbar spine for four commonly utilised extrication techniques. Methods Biomechanical data was collected using inertial Measurement Units on 6 healthy volunteers. The extrication types examined were: roof removal, b-post rip, rapid removal and self-extrication. Measurements were recorded at the cervical and lumbar spine, and in the anteroposterior (AP) and lateral (LAT) planes. Total movement (travel), maximal movement, mean, standard deviation and confidence intervals are reported for each extrication type. Results Data from a total of 230 extrications were collected for analysis. The smallest maximal and total movement (travel) were seen when the volunteer self-extricated (AP max = 2.6 mm, travel 4.9 mm). The largest maximal movement and travel were seen in rapid extrication extricated (AP max = 6.21 mm, travel 20.51 mm). The differences between self-extrication and all other methods were significant (p < 0.001), small non-significant differences existed between roof removal, b-post rip and rapid removal. Self-extrication was significantly quicker than the other extrication methods (mean 6.4 s). Conclusions In healthy volunteers, self-extrication is associated with the smallest spinal movement and the fastest time to complete extrication. Rapid, B-post rip and roof off extrication types are all associated with similar movements and time to extrication in prepared vehicles.


2021 ◽  
Author(s):  
Tim Nutbeam ◽  
Rob Fenwick ◽  
Barbara May ◽  
Willem Stassen ◽  
Jason Smith ◽  
...  

Abstract Background:Motor vehicle collisions remain a common cause of spinal cord injury. Biomechanical studies of spinal movement often lack “real world” context and applicability. Additional data may enhance our understanding of the potential for secondary spinal cord injury. We propose the metric ‘travel’ (total movement) and suggest that our understanding of movement related risk of injury could be improved if travel was routinely reported. We report maximal movement and travel for collar application in vehicle and subsequent self-extrication.Methods:Biomechanical data on application of cervical collar with the volunteer sat in a vehicle were collected using Inertial Measurement Units on 6 healthy volunteers. Maximal movement and travel are reported. These data and a re-analysis of previously published work is used to demonstrate the utility of travel and maximal movement in the context of self-extrication.Results:Data from a total of 60 in-vehicle collar applications across three female and three male volunteers was successfully collected for analysis. The mean age across participants was 50.3 years (range 28–68) and the BMI was 27.7 (range 21.5–34.6). The mean maximal anterior-posterior movement associated with collar application was 2.3mm with a total AP travel of 4.9mm. Travel (total movement) for in-car application of collar and self-extrication was 9.5mm compared to 9.4mm travel for self-extrication without a collar. Conclusion:We have demonstrated the application of ‘travel’ in the context of self-extrication. Total travel is similar across self-extricating healthy volunteers with and without a collar.We suggest that where possible ‘travel’ is collected and reported in future biomechanical studies in this and related areas of research. It remains appropriate to apply a cervical collar to self-extricating casualties when the clinical target is that of movement minimisation.


Author(s):  
Tim Nutbeam ◽  
Rob Fenwick ◽  
Barbara May ◽  
Willem Stassen ◽  
Jason Smith ◽  
...  

Abstract Background Motor vehicle collisions remain a common cause of spinal cord injury. Biomechanical studies of spinal movement often lack “real world” context and applicability. Additional data may enhance our understanding of the potential for secondary spinal cord injury. We propose the metric ‘travel’ (total movement) and suggest that our understanding of movement related risk of injury could be improved if travel was routinely reported. We report maximal movement and travel for collar application in vehicle and subsequent self-extrication. Methods Biomechanical data on application of cervical collar with the volunteer sat in a vehicle were collected using Inertial Measurement Units on 6 healthy volunteers. Maximal movement and travel are reported. These data and a re-analysis of previously published work is used to demonstrate the utility of travel and maximal movement in the context of self-extrication. Results Data from a total of 60 in-vehicle collar applications across three female and three male volunteers was successfully collected for analysis. The mean age across participants was 50.3 years (range 28–68) and the BMI was 27.7 (range 21.5–34.6). The mean maximal anterior–posterior movement associated with collar application was 2.3 mm with a total AP travel of 4.9 mm. Travel (total movement) for in-car application of collar and self-extrication was 9.5 mm compared to 9.4 mm travel for self-extrication without a collar. Conclusion We have demonstrated the application of ‘travel’ in the context of self-extrication. Total travel is similar across self-extricating healthy volunteers with and without a collar. We suggest that where possible ‘travel’ is collected and reported in future biomechanical studies in this and related areas of research. It remains appropriate to apply a cervical collar to self-extricating casualties when the clinical target is that of movement minimisation.


2021 ◽  
Author(s):  
Olsheath Bowen (First Author) ◽  
C Walters ◽  
Eric Wilson Williams ◽  
Leohrandra Graham ◽  
Jean Williams-Johnson (last author)

Abstract Background: Cervical spine injuries are myriad and ubiquitous, however the related demographic information has not been documented for the Jamaican or Caribbean population. These injuries can be life threatening and so it is important for the Emergency Physician to adhere to guidelines which direct management decisions including the need for imaging. This study therefore is an effort to report on the epidemiology of patients with cervical spine injuries presenting to the Emergency Department (ED) at the University Hospital of the West Indies (UHWI) and the use of clinical rules in the diagnosis of these injuries.This was a retrospective study. The log books from the ED at the UHWI were used to identify patients presenting with possible cervical spine injuries from January 1, 2013 to December 31, 2016. Inclusion/exclusion criteria were applied to select study patients. Demographical and clinical information was collected and evaluated.Results: 1,380 charts were identified as possible subjects. Of these, 887 charts were located and 806 (90.9%) were eligible. Ages ranged from 16 to 101 years with an average of 37.5 years. The majority of subjects were male, with a male to female ratio of 3:1. The main causes of these injuries were motor-vehicle collision (46.4%), motor-bike collision (23.8%) and fall from elevation (13.1%). Cervical spine injuries were identified in 20 (2.48%) subjects where motor-vehicle collision (45%) and motor-bike collisions (25%) were the main cause for injuries. Documentation of clinical rules applied to determine the need for radiological testing were present for 37.7% of the study population (NEXUS 36.2%, CCR 0.4% and combination 1.1%)Conclusion: The main source of injuries was due to road traffic accidents. This suggests more needs to be done regarding road safety. There is also room for improvement as it relates to the use of decision rules which may reduce the occurrence of unnecessary imaging.


2017 ◽  
Vol 11 (5) ◽  
pp. 733-738
Author(s):  
Kedar Prashant Padhye ◽  
Yuvaraja Murugan ◽  
Raunak Milton ◽  
N. Arunai Nambi Raj ◽  
Kenny Samuel David

<sec><title>Study Design</title><p>Cadaveric biomechanical study.</p></sec><sec><title>Purpose</title><p>We compared the “skipped segment screw” (SSS) construct with the conventional “all segment screw” (ASS) construct for cervical spine fixation in six degrees of freedom in terms of the range of motion (ROM).</p></sec><sec><title>Overview of Literature</title><p>Currently, no clear guidelines are available in the literature for the configuration of lateral mass (LM) screwrod fixation for cervical spine stabilization. Most surgeons tend to insert screws bilaterally at all segments from C3 to C6 with the assumption that implants at every level will provide maximum stability.</p></sec><sec><title>Methods</title><p>Six porcine cervical spine specimens were harvested from fresh 6–9-month-old pigs. Each specimen was sequentially tested in the following order: intact uninstrumented (UIS), SSS (LM screws in C3, C5, and C7 bilaterally), and ASS (LM screws in C3–C7 bilaterally). Biomechanical testing was performed with a force of 2 Nm in six degrees of freedom and 3D motion tracking was performed.</p></sec><sec><title>Results</title><p>The two-tailed paired <italic>t</italic>-test was used for statistical analysis. There was a significant decrease in ROM in instrumented specimens compared with that in UIS specimens in all six degrees of motion (<italic>p</italic>&lt;0.05), whereas there was no significant difference in ROM between the different types of constructs (SSS and ASS).</p></sec><sec><title>Conclusions</title><p>Because both configurations provide comparable stability under physiological loading, we provide a biomechanical basis for the use of SSS configuration owing to its potential clinical advantages, such as relatively less bulk of implants within a small operative field, relative ease of manipulating the rod into position, shorter surgical time, less blood loss, lower risk of screw-related complications, less implant-related costs, and most importantly, no compromise in the required stability needed until fusion.</p></sec>


2014 ◽  
Vol 2014 ◽  
pp. 1-3
Author(s):  
Matthew F. Ryan ◽  
David Meurer ◽  
J. Adrian Tyndall

Cervical acceleration/deceleration or whiplash injuries are a common cause of cervical spine trauma. Cervical acceleration/deceleration can result in vertebral fractures, subluxations, and ligamentous and other soft tissue injuries. Severe injuries are often evidenced by increased prevertebral swelling on lateral X-ray. Assessment of the prevertebral space on lateral cervical spine films is an essential component for identifying potential traumatic neck injuries. We describe a case in which an 84-year-old man on coumadin presented to the emergency department after a low-impact motor vehicle crash. The patient initially complained of neck and shoulder pain which subsequently progressed to hoarseness, dysphagia, and dyspnea. Imaging studies revealed significant prevertebral tissue swelling with anterior compression of his airway that required airway stabilization via awake fiber-optic intubation and reversal of his anticoagulation therapy.


2007 ◽  
Vol 12 (3) ◽  
pp. 4-7
Author(s):  
Charles N. Brooks ◽  
Christopher R. Brigham

Abstract Multiple factors determine the likelihood, type, and severity of bodily injury following a motor vehicle collision and, in turn, influence the need for treatment, extent of disability, and likelihood of permanent impairment. Among the most important factors is the change in velocity due to an impact (Δv). Other factors include the individual's strength and elasticity, body position at the time of impact, awareness of the impending impact (ie, opportunity to brace, guard, or contract muscles before an impact), and effects of braking. Because Δv is the area under the acceleration vs time curve, it combines force and duration and is a useful way to quantify impact severity. The article includes a table showing the results of a literature review that concluded, “the consensus of human subject research conducted to date is that a single exposure to a rear-end impact with a Δv of 5 mph or less is unlikely to result in injury” in most healthy, restrained occupants. Because velocity incorporates direction as well as speed, a vehicular occupant is less likely to be injured in a rear impact than when struck from the side. Evaluators must consider multiple factors, including the occupant's pre-existing physical and psychosocial status, the mechanism and magnitude of the collision, and a variety of biomechanical variables. Recommendations based solely on patient history and physical findings (and, perhaps, imaging studies) may be ill-informed.


Sign in / Sign up

Export Citation Format

Share Document