scholarly journals Use and impact of high intensity treatments in patients with traumatic brain injury across Europe: a CENTER-TBI analysis

Critical Care ◽  
2021 ◽  
Vol 25 (1) ◽  
Author(s):  
Jilske A. Huijben ◽  
◽  
Abhishek Dixit ◽  
Nino Stocchetti ◽  
Andrew I. R. Maas ◽  
...  

Abstract Purpose To study variation in, and clinical impact of high Therapy Intensity Level (TIL) treatments for elevated intracranial pressure (ICP) in patients with traumatic brain injury (TBI) across European Intensive Care Units (ICUs). Methods We studied high TIL treatments (metabolic suppression, hypothermia (< 35 °C), intensive hyperventilation (PaCO2 < 4 kPa), and secondary decompressive craniectomy) in patients receiving ICP monitoring in the ICU stratum of the CENTER-TBI study. A random effect logistic regression model was used to determine between-centre variation in their use. A propensity score-matched model was used to study the impact on outcome (6-months Glasgow Outcome Score-extended (GOSE)), whilst adjusting for case-mix severity, signs of brain herniation on imaging, and ICP. Results 313 of 758 patients from 52 European centres (41%) received at least one high TIL treatment with significant variation between centres (median odds ratio = 2.26). Patients often transiently received high TIL therapies without escalation from lower tier treatments. 38% of patients with high TIL treatment had favourable outcomes (GOSE ≥ 5). The use of high TIL treatment was not significantly associated with worse outcome (285 matched pairs, OR 1.4, 95% CI [1.0–2.0]). However, a sensitivity analysis excluding high TIL treatments at day 1 or use of metabolic suppression at any day did reveal a statistically significant association with worse outcome. Conclusion Substantial between-centre variation in use of high TIL treatments for TBI was found and treatment escalation to higher TIL treatments were often not preceded by more conventional lower TIL treatments. The significant association between high TIL treatments after day 1 and worse outcomes may reflect aggressive use or unmeasured confounders or inappropriate escalation strategies. Take home message Substantial variation was found in the use of highly intensive ICP-lowering treatments across European ICUs and a stepwise escalation strategy from lower to higher intensity level therapy is often lacking. Further research is necessary to study the impact of high therapy intensity treatments. Trial registration The core study was registered with ClinicalTrials.gov, number NCT02210221, registered 08/06/2014, https://clinicaltrials.gov/ct2/show/NCT02210221?id=NCT02210221&draw=1&rank=1 and with Resource Identification Portal (RRID: SCR_015582).

2020 ◽  
Author(s):  
Jilske Huijben ◽  
Abhishek Dixit ◽  
Nino Stocchetti ◽  
Andrew Maas ◽  
Hester Lingsma ◽  
...  

Abstract Purpose: To study variation in, and clinical impact of high Therapy Intensity Level (TIL) treatments for elevated intracranial pressure (ICP) in patients with traumatic brain injury (TBI) across European Intensive Care Units (ICUs).Methods: We studied high TIL treatments (metabolic suppression, hypothermia (<35oC), intensive hyperventilation (PaCO2 <4 kPa), and secondary decompressive craniectomy) in patients receiving ICP monitoring in the ICU stratum of the CENTER-TBI study. A random effect logistic regression model was used to determine between-centre variation in their use. A propensity score-matched model was used to study the impact on outcome (6-months Glasgow Outcome Score-extended(GOSE)), whilst adjusting for case-mix severity, signs of brain herniation on imaging, and ICP.Results: 313 of 758 patients from 52 European centres (41%) received at least one high TIL treatment with significant variation between centres (median odds ratio = 2.4). Patients often transiently received high TIL therapies without escalation from lower tier treatments. 38% of patients with high TIL treatment had favourable outcomes (GOSE > 5). The use of high TIL treatment was not significantly associated with worse outcome (285 matched pairs, OR: 1.4, 95% CI [1.0 -2.0]). However, a sensitivity analysis excluding high TIL treatments at day 1 or use of metabolic suppression at any day did reveal a statistically significant association with worse outcome.Conclusion: Substantial between-centre variation in use of high TIL treatments for TBI was found and treatment escalation to higher TIL treatments were often not preceded by more conventional lower TIL treatments. The significant association between high TIL treatments after day 1 and worse outcomes may reflect aggressive use or unmeasured confounders or inappropriate escalation strategies.Take home message: Substantial variation was found in the use of highly intensive ICP-lowering treatments across European ICUs and a stepwise escalation strategy from lower to higher intensity level therapy is often lacking. Further research is necessary to study the impact of high therapy intensity treatments.Trial registration: The core study was registered with ClinicalTrials.gov, number NCT02210221, registered 08/06/2014, https://clinicaltrials.gov/ct2/show/NCT02210221?id=NCT02210221&draw=1&rank=1 and with Resource Identification Portal (RRID: SCR_015582).


Author(s):  
Fleur Lorton ◽  
Jeanne Simon-Pimmel ◽  
Damien Masson ◽  
Elise Launay ◽  
Christèle Gras-Le Guen ◽  
...  

AbstractObjectivesTo evaluate the impact of implementing a modified Pediatric Emergency Care Applied Research Network (PECARN) rule including the S100B protein assay for managing mild traumatic brain injury (mTBI) in children.MethodsA before-and-after study was conducted in a paediatric emergency department of a French University Hospital from 2013 to 2015. We retrospectively included all consecutive children aged 4 months to 15 years who presented mTBI and were at intermediate risk for clinically important traumatic brain injury (ciTBI). We compared the proportions of CT scans performed and of in-hospital observations before (2013–2014) and after (2014–2015) implementation of a modified PECARN rule including the S100B protein assay.ResultsWe included 1,062 children with mTBI (median age 4.5 years, sex ratio [F/M] 0.73) who were at intermediate risk for ciTBI: 494 (46.5%) during 2013–2014 and 568 (53.5%) during 2014–2015. During 2014–2015, S100B protein was measured in 451 (79.4%) children within 6 h after mTBI. The proportion of CT scans and in-hospital observations significantly decreased between the two periods, from 14.4 to 9.5% (p=0.02) and 73.9–40.5% (p<0.01), respectively. The number of CT scans performed to identify a single ciTBI was reduced by two-thirds, from 18 to 6 CT scans, between 2013–2014 and 2014–2015. All children with ciTBI were identified by the rules.ConclusionsThe implementation of a modified PECARN rule including the S100B protein assay significantly decreased the proportion of CT scans and in-hospital observations for children with mTBI who were at intermediate risk for ciTBI.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Lauren Alexis De Crescenzo ◽  
Barbara Alison Gabella ◽  
Jewell Johnson

Abstract Background The transition in 2015 to the Tenth Revision of the International Classification of Disease, Clinical Modification (ICD-10-CM) in the US led the Centers for Disease Control and Prevention (CDC) to propose a surveillance definition of traumatic brain injury (TBI) utilizing ICD-10-CM codes. The CDC’s proposed surveillance definition excludes “unspecified injury of the head,” previously included in the ICD-9-CM TBI surveillance definition. The study purpose was to evaluate the impact of the TBI surveillance definition change on monthly rates of TBI-related emergency department (ED) visits in Colorado from 2012 to 2017. Results The monthly rate of TBI-related ED visits was 55.6 visits per 100,000 persons in January 2012. This rate in the transition month to ICD-10-CM (October 2015) decreased by 41 visits per 100,000 persons (p-value < 0.0001), compared to September 2015, and remained low through December 2017, due to the exclusion of “unspecified injury of head” (ICD-10-CM code S09.90) in the proposed TBI definition. The average increase in the rate was 0.33 visits per month (p < 0.01) prior to October 2015, and 0.04 visits after. When S09.90 was included in the model, the monthly TBI rate in Colorado remained smooth from ICD-9-CM to ICD-10-CM and the transition was no longer significant (p = 0.97). Conclusion The reduction in the monthly TBI-related ED visit rate resulted from the CDC TBI surveillance definition excluding unspecified head injury, not necessarily the coding transition itself. Public health practitioners should be aware that the definition change could lead to a drastic reduction in the magnitude and trend of TBI-related ED visits, which could affect decisions regarding the allocation of TBI resources. This study highlights a challenge in creating a standardized set of TBI ICD-10-CM codes for public health surveillance that provides comparable yet clinically relevant estimates that span the ICD transition.


2015 ◽  
Vol 105 ◽  
pp. 20-28 ◽  
Author(s):  
Linda Isaac ◽  
Keith L. Main ◽  
Salil Soman ◽  
Ian H. Gotlib ◽  
Ansgar J. Furst ◽  
...  

2014 ◽  
Vol 31 (8) ◽  
pp. 713-721 ◽  
Author(s):  
Janine M. Cooper ◽  
Cathy Catroppa ◽  
Miriam H. Beauchamp ◽  
Serem Eren ◽  
Celia Godfrey ◽  
...  

Brain Injury ◽  
2009 ◽  
Vol 23 (7-8) ◽  
pp. 639-648 ◽  
Author(s):  
Lakshmi Srinivasan ◽  
Brian Roberts ◽  
Tamara Bushnik ◽  
Jeffrey Englander ◽  
David A. Spain ◽  
...  

2018 ◽  
Vol 30 (1) ◽  
pp. 85-100 ◽  
Author(s):  
Jennie Ponsford ◽  
Marina Downing ◽  
Helen Pechlivanidis

Sign in / Sign up

Export Citation Format

Share Document