scholarly journals The amino acid transporter SLC7A5 confers a poor prognosis in the highly proliferative breast cancer subtypes and is a key therapeutic target in luminal B tumours

2018 ◽  
Vol 20 (1) ◽  
Author(s):  
Rokaya El Ansari ◽  
Madeleine L. Craze ◽  
Islam Miligy ◽  
Maria Diez-Rodriguez ◽  
Christopher C. Nolan ◽  
...  
2020 ◽  
pp. jclinpath-2020-206457
Author(s):  
Masaaki Ichinoe ◽  
Tetuo Mikami ◽  
Nobuyuki Yanagisawa ◽  
Tsutomu Yoshida ◽  
Kiyomi Hana ◽  
...  

AimsL-type amino acid transporter 1 (LAT1) is a major Na+-independent neutral amino acid transporter, forming a complex with CD98hc. The aim of this study is to investigate the significance of LAT1 and CD98hc in invasive breast cancer.MethodsLAT1 and CD98hc expression was immunohistochemically assessed in 280 invasive breast cancers and analysed for association with clinicopathological features.ResultsHigh levels of LAT1 and CD98hc were observed in triple-negative breast cancers (TNBCs) possessing negative immunoreactivity with oestrogen receptor, progesterone receptor and human epidermal growth factor receptor 2, compared with non-TNBCs (NTNBCs), and were associated with lymph-node metastasis and higher nuclear grade. The high-LAT1-expression group showed a poor prognosis in NTNBC and TNBC, however, high-CD98hc-expression group showed a poor prognosis only in NTNBC. LAT1 and CD98hc expression could be the prognostic factors in univariate analyses, but not in multivariate analyses. Further, we found that invasive tumour components showed higher LAT1 and CD98hc expression than non-invasive tumour components.ConclusionsLAT1 and CD98hc may possess prognostic values in invasive breast cancer. LAT1 may be linked with cancer cell activities and disease progression in breast cancer.


2015 ◽  
Vol 469 (1) ◽  
pp. 17-23 ◽  
Author(s):  
Ellappan Babu ◽  
Yangzom D. Bhutia ◽  
Sabarish Ramachandran ◽  
Jaya P. Gnanaprakasam ◽  
Puttur D. Prasad ◽  
...  

Deletion of the amino acid transporter Slc6a14 in mice suppresses tumour growth in spontaneous models of breast cancer via interference with mammalian target of rapamycin (mTOR) pathway; this indicates an obligatory role for SLC6A14 in breast cancer, highlighting its potential as a therapeutic target.


2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Nicole J. Chew ◽  
Terry C. C. Lim Kam Sian ◽  
Elizabeth V. Nguyen ◽  
Sung-Young Shin ◽  
Jessica Yang ◽  
...  

Abstract Background Particular breast cancer subtypes pose a clinical challenge due to limited targeted therapeutic options and/or poor responses to the existing targeted therapies. While cell lines provide useful pre-clinical models, patient-derived xenografts (PDX) and organoids (PDO) provide significant advantages, including maintenance of genetic and phenotypic heterogeneity, 3D architecture and for PDX, tumor–stroma interactions. In this study, we applied an integrated multi-omic approach across panels of breast cancer PDXs and PDOs in order to identify candidate therapeutic targets, with a major focus on specific FGFRs. Methods MS-based phosphoproteomics, RNAseq, WES and Western blotting were used to characterize aberrantly activated protein kinases and effects of specific FGFR inhibitors. PDX and PDO were treated with the selective tyrosine kinase inhibitors AZD4547 (FGFR1-3) and BLU9931 (FGFR4). FGFR4 expression in cancer tissue samples and PDOs was assessed by immunohistochemistry. METABRIC and TCGA datasets were interrogated to identify specific FGFR alterations and their association with breast cancer subtype and patient survival. Results Phosphoproteomic profiling across 18 triple-negative breast cancers (TNBC) and 1 luminal B PDX revealed considerable heterogeneity in kinase activation, but 1/3 of PDX exhibited enhanced phosphorylation of FGFR1, FGFR2 or FGFR4. One TNBC PDX with high FGFR2 activation was exquisitely sensitive to AZD4547. Integrated ‘omic analysis revealed a novel FGFR2-SKI fusion that comprised the majority of FGFR2 joined to the C-terminal region of SKI containing the coiled-coil domains. High FGFR4 phosphorylation characterized a luminal B PDX model and treatment with BLU9931 significantly decreased tumor growth. Phosphoproteomic and transcriptomic analyses confirmed on-target action of the two anti-FGFR drugs and also revealed novel effects on the spliceosome, metabolism and extracellular matrix (AZD4547) and RIG-I-like and NOD-like receptor signaling (BLU9931). Interrogation of public datasets revealed FGFR2 amplification, fusion or mutation in TNBC and other breast cancer subtypes, while FGFR4 overexpression and amplification occurred in all breast cancer subtypes and were associated with poor prognosis. Characterization of a PDO panel identified a luminal A PDO with high FGFR4 expression that was sensitive to BLU9931 treatment, further highlighting FGFR4 as a potential therapeutic target. Conclusions This work highlights how patient-derived models of human breast cancer provide powerful platforms for therapeutic target identification and analysis of drug action, and also the potential of specific FGFRs, including FGFR4, as targets for precision treatment.


2021 ◽  
Author(s):  
Sasagu Kurouzmi ◽  
Kyoichi Kaira ◽  
Hiroshi Matsumoto ◽  
Masafumi Kurosumi ◽  
Takehiko Yokobori ◽  
...  

Abstract PURPOSE: L-type amino acid transporter 1 (LAT1), also referred to as SLC7A5, is believed to regulate tumor metabolism and be associated with tumor proliferation. In invasive breast cancer, we clinicopathologically investigated the utility of LAT1 expression. METHODS: LAT1 expression was evaluated via immunohistochemistry analyses in 250 breast cancer patients undergoing long-term follow-up. We assessed the relationship between LAT1 expression and the patients’ outcomes and clinicopathological factors. Breast cancer-specific survival stratified by LAT1 expression was assessed.RESULTS: High LAT1 expression was significantly correlated with estrogen receptor (ER) negativity, progesterone receptor negativity, high histological grade, increased tumor-infiltrating lymphocytes, and programmed death ligand 1 positivity. Among the ER-positive and human epidermal growth factor 2-negative type cases, high LAT1 was an independent indicator of poor outcomes (hazard ratio (HR) = 2.97; 95% confidence interval (CI), 1.16–7.62; p = 0.023). Moreover, high LAT1 expression was an independent poor prognostic factor in luminal B-like breast cancer with aggressive features (HR = 3.39; 95% CI, 1.35–8.52; p = 0.0094).CONCLUSIONS: High LAT1 expression identified a subgroup of invasive breast cancer characterized by aggressive behavior and high tumor immunoreaction. Our findings suggest that LAT1 might be a candidate therapeutic target for breast cancer patients, particularly those with luminal B-like type breast cancer.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Atif Ali Hashmi ◽  
Kashif Ali Hashmi ◽  
Muhammad Irfan ◽  
Saadia Mehmood Khan ◽  
Muhammad Muzzammil Edhi ◽  
...  

Abstract Objectives Ki67 is the most commonly used marker to evaluate proliferative index in breast cancer, however no cutoff values have been clearly defined for high ki67 index. Cancer management should be according to loco-regional profile; therefore, we aimed to determine ki67 index in 1951 cases of intrinsic breast cancer subtypes and its association with other prognostic parameters in our set up. Results Triple negative breast cancers showed highest ki67 index (mean 50.9 ± 23.7%) followed by Her2neu (mean 42.6 ± 21.6%) and luminal B cancers (mean 34.9 ± 20.05%). Metaplastic and medullary breast cancers significantly showed higher ki67 index as compared to ductal carcinoma, NOS. No significant association of ki67 index was noted with any of the histologic parameters in different subtypes of breast cancer expect for tumor grade. Although, ki67 index is a valuable biomarker in breast cancer, however no independent prognostic significance of ki67 could be established in our study.


2019 ◽  
Vol 178 (2) ◽  
pp. 451-458 ◽  
Author(s):  
Giuseppe Viale ◽  
Amy E. Hanlon Newell ◽  
Espen Walker ◽  
Greg Harlow ◽  
Isaac Bai ◽  
...  

2009 ◽  
Vol 27 (15_suppl) ◽  
pp. e11516-e11516
Author(s):  
A. Guerrero-Zotano ◽  
J. Gavila ◽  
M. A. Climent ◽  
M. J. Juan ◽  
V. Guillem ◽  
...  

e11516 Background: Gene expression profiling identifies several breast cancer subtypes with different chemosensitivity and outcome. We used immunohistochemistry surrogate markers to classify tumors according to known breast cancer subtypes and examined the relationship between neoadjuvant chemotherapy (NAC) response and long-term end points, including distant disease-free survival (DDFS) and overall survival (OS). Methods: Review of clinical and pathological data from 271 breast cancer patients treated in our institution with NAC between 1991–2008. Breast cancer subtypes were defined as follows: Luminal A: Estrogen receptor positive (ER+) and/or progesterone peceptor positive (PR+), human epidermal growth factor receptor 2-positive (Her-2+); Luminal B: ER+ and/or PR+,Her-2+; Basal: ER-,PR-,Her-2-;HER2: ER-,PR-,Her-2 +. ER and PR positive scored as positive if tumor cell nuclear staining was at least 2+. Her-2 scored as positive if test DAKO scored 3+ or FISH ratio Her-2/CEP-17>2.2. Results: 121 (45.8%) patients were classifed as Luminal A; 22 (8.1%) as Luminal B; 75 (27.7%) as Basal, and 50 (18.5%) as HER2. Most patients (63%) received NAC based on anthracyclines and taxanes. 36% Her-2+ patients were treated with NAC based on trastuzumab, and 43% received trastuzumab as adjuvant treatment. Response and outcome results are shown below (Table). Independently from subtype, only four patients out of 58 with pCR relapsed. Among patients who didn´t achieved pathologic complete response (pCR), basal and HER2 subtypes have the worst outcome (4 years SG 80% and 72% respectevely) compared with Luminal A (4 years SG: 94.7%), (log-rank p=0.009). Conclusions: Basal and HER2 tumor despite high chemosensitivity have worst long term outcome, particularly if pCR is not achieved after NAC. [Table: see text] No significant financial relationships to disclose.


2012 ◽  
Vol 30 (15_suppl) ◽  
pp. 1041-1041
Author(s):  
Joaquina Martínez-Galan ◽  
Sandra Rios ◽  
Juan Ramon Delgado ◽  
Blanca Torres-Torres ◽  
Jesus Lopez-Peñalver ◽  
...  

1041 Background: Identification of gene expression-based breast cancer subtypes is considered a critical means of prognostication. Genetic mutations along with epigenetic alterations contribute to gene-expression changes occurring in breast cancer. However, the reproducibility of differential DNA methylation discoveries for cancer and the relationship between DNA methylation and aberrant gene expression have not been systematically analysed. The present study was undertaken to dissect the breast cancer methylome and to deliver specific epigenotypes associated with particular breast cancer subtypes. Methods: By using Real Time QMSPCR SYBR green we analyzed DNA methylation in regulatory regions of 107 pts with breast cancer and analyzed association with prognostics factor in triple negative breast cancer and methylation promoter ESR1, APC, E-Cadherin, Rar B and 14-3-3 sigma. Results: We identified novel subtype-specific epigenotypes that clearly demonstrate the differences in the methylation profiles of basal-like and human epidermal growth factor 2 (HER2)-overexpressing tumors. Of the cases, 37pts (40%) were Luminal A (LA), 32pts (33%) Luminal B (LB), 14pts (15%) Triple-negative (TN), and 9pts (10%) HER2+. DNA hypermethylation was highly inversely correlated with the down-regulation of gene expression. Methylation of this panel of promoter was found more frequently in triple negative and HER2 phenotype. ESR1 was preferably associated with TN(80%) and HER2+(60%) subtype. With a median follow up of 6 years, we found worse overall survival (OS) with more frequent ESR1 methylation gene(p>0.05), Luminal A;ESR1 Methylation OS at 5 years 81% vs 93% when was ESR1 Unmethylation. Luminal B;ESR1 Methylation 86% SG at 5 years vs 92% in Unmethylation ESR1. Triple negative;ESR1 Methylation SG at 5 years 75% vs 80% in unmethylation ESR1. HER2;ESR1 Methylation SG at 5 years was 66.7% vs 75% in unmethylation ESR1. Conclusions: Our results provide evidence that well-defined DNA methylation profiles enable breast cancer subtype prediction and support the utilization of this biomarker for prognostication and therapeutic stratification of patients with breast cancer.


2015 ◽  
Vol 26 ◽  
pp. iii15 ◽  
Author(s):  
S. Kammerer ◽  
A. Sokolowski ◽  
H. Hackl ◽  
D. Platzer ◽  
S. Jahn ◽  
...  

2014 ◽  
Vol 16 (3) ◽  
Author(s):  
Patrick Maisonneuve ◽  
Davide Disalvatore ◽  
Nicole Rotmensz ◽  
Giuseppe Curigliano ◽  
Marco Colleoni ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document