scholarly journals Population-level analysis reveals the widespread occurrence and phenotypic consequence of DNA methylation variation not tagged by genetic variation in maize

2019 ◽  
Vol 20 (1) ◽  
Author(s):  
Jing Xu ◽  
Guo Chen ◽  
Peter J. Hermanson ◽  
Qiang Xu ◽  
Changshuo Sun ◽  
...  

Abstract Background DNA methylation can provide a source of heritable information that is sometimes entirely uncoupled from genetic variation. However, the extent of this uncoupling and the roles of DNA methylation in shaping diversity of both gene expression and phenotypes are hotly debated. Here, we investigate the genetic basis and biological functions of DNA methylation at a population scale in maize. Results We perform targeted DNA methylation profiling for a diverse panel of 263 maize inbred genotypes. All genotypes show similar levels of DNA methylation globally, highlighting the importance of DNA methylation in maize development. Nevertheless, we identify more than 16,000 differentially methylated regions (DMRs) that are distributed across the 10 maize chromosomes. Genome-wide association analysis with high-density genetic markers reveals that over 60% of the DMRs are not tagged by SNPs, suggesting the presence of unique information in DMRs. Strong associations between DMRs and the expression of many genes are identified in both the leaf and kernel tissues, pointing to the biological significance of methylation variation. Association analysis with 986 metabolic traits suggests that DNA methylation is associated with phenotypic variation of 156 traits. There are some traits that only show significant associations with DMRs and not with SNPs. Conclusions These results suggest that DNA methylation can provide unique information to explain phenotypic variation in maize.

2014 ◽  
Author(s):  
David A. Hughes ◽  
Nicole C. Rodney ◽  
Connie J. Mulligan

DNA methylation variation has been implicated as a factor that influences inter-individual and inter-tissue phenotypic variation in numerous organisms and under various conditions. Here, using a unique collection of three tissues, derived from 24 mother-newborn dyads from war-torn Democratic Republic of Congo, we estimate how stress, heritability, tissue type and genomic/regulatory context influence genome-wide DNA methylation. We also evaluate if stress-associated variation may mediate an observed phenotype - newborn birthweight. On average, a minimal influence of stress and heritability are observed, while in contrast extensive among tissues and context dependency is evident. However, a notable overlap in heritable and stress-associated variation is observed and that variation is commonly correlated with birthweight variation. Finally, we observe that variation outside of promoter regions, particularly in enhancers, is far more dynamic across tissues and across conditions than in promoters, suggesting that variation outside of promoters may play a larger role in expression variation than variation found within promoter regions.


2016 ◽  
Vol 8 (1) ◽  
Author(s):  
Nicklas H. Staunstrup ◽  
Anna Starnawska ◽  
Mette Nyegaard ◽  
Lene Christiansen ◽  
Anders L. Nielsen ◽  
...  

2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi5-vi5
Author(s):  
Wies Vallentgoed ◽  
Anneke Niers ◽  
Karin van Garderen ◽  
Martin van den Bent ◽  
Kaspar Draaisma ◽  
...  

Abstract The GLASS-NL consortium, was initiated to gain insight into the molecular mechanisms underlying glioma evolution and to identify markers of progression in IDH-mutant astrocytomas. Here, we present the first results of genome-wide DNA-methylation profiling of GLASS-NL samples. 110 adult patients were identified with an IDH-mutant astrocytoma at first diagnosis. All patients underwent a surgical resection of the tumor at least twice, separated by at least 6 months (median 40.9 months (IQR: 24.0, 64.7). In 37% and 18% of the cases, patients were treated with radiotherapy or chemotherapy respectively, before surgical resection of the recurrent tumor. DNA-methylation profiling was done on 235 samples from 103 patients (102 1st, 101 2nd, 29 3rd, and 3 4th resection). Copy number variations were also extracted from these data. Methylation classes were determined according to Capper et al. Overall survival (OS) was measured from date of first surgery. Of all primary tumors, the methylation-classifier assigned 85 (87%) to the low grade subclass and 10 (10%) to the high grade subclass. The relative proportion of high grade tumors increased ~three-fold at tumor recurrence (32/101, 32%) and even further in the second recurrence (15/29, 52%). Methylation classes were prognostic, both in primary and recurrent tumors. The overall DNA-methylation levels of recurrent samples was lower than that of primary samples. This difference is explained by the increased number of high grade samples at recurrence, since near identical DNA-methylation levels were observed in samples that remained low grade. In an unsupervised analysis, DNA-methylation data derived from primary and first recurrence samples of individual patients mostly (79%) cluster together. Recurrent samples that do not cluster with their primary tumor, form a separate group with relatively low genome-wide DNA-methylation. Our data demonstrate that methylation profiling identifies a shift towards a higher grade at tumor progression coinciding with reduced genome-wide DNA-methylation levels.


2018 ◽  
Vol 10 (1) ◽  
Author(s):  
Youdinghuan Chen ◽  
David A. Armstrong ◽  
Lucas A. Salas ◽  
Haley F. Hazlett ◽  
Amanda B. Nymon ◽  
...  

2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Lili Liu ◽  
Yanjie Chen ◽  
Taotao Liu ◽  
Jie Yu ◽  
Lili Ma ◽  
...  

Plants ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 135 ◽  
Author(s):  
Zhongyuan Lin ◽  
Meihui Liu ◽  
Rebecca Njeri Damaris ◽  
Tonny Maraga Nyong’a ◽  
Dingding Cao ◽  
...  

DNA methylation is a vital epigenetic modification. Methylation has a significant effect on the gene expression influencing the regulation of different physiological processes. Current studies on DNA methylation have been conducted on model plants. Lotus (Nelumbo nucifera) is a basic eudicot exhibiting variations during development, especially in flower formation. DNA methylation profiling was conducted on different flower tissues of lotuses through whole genome bisulfite sequencing (WGBS) to investigate the effects of DNA methylation on its stamen petaloid. A map of methylated cytosines at the single base pair resolution for the lotus was constructed. When the stamen was compared with the stamen petaloid, the DNA methylation exhibited a global decrease. Genome-wide relationship analysis between DNA methylation and gene expression identified 31 different methylation region (DMR)-associated genes, which might play crucial roles in floral organ formation, especially in the stamen petaloid. One out of 31 DMR-associated genes, NNU_05638 was homolog with Plant U-box 33 (PUB33). The DNA methylation status of NNU_05638 promoter was distinct in three floral organs, which was confirmed by traditional bisulfite sequencing. These results provide further insights about the regulation of stamen petaloids at the epigenetic level in lotus.


2019 ◽  
Vol 110 (2) ◽  
pp. 828-832 ◽  
Author(s):  
Taishi Nakamura ◽  
Kohei Fukuoka ◽  
Yoshiko Nakano ◽  
Kai Yamasaki ◽  
Yuko Matsushita ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document