scholarly journals A phylogeny of Cichlidogyrus spp. (Monogenea, Dactylogyridea) clarifies a host-switch between fish families and reveals an adaptive component to attachment organ morphology of this parasite genus

2015 ◽  
Vol 8 (1) ◽  
Author(s):  
Françoise D. Messu Mandeng ◽  
Charles F. Bilong Bilong ◽  
Antoine Pariselle ◽  
Maarten P. M. Vanhove ◽  
Arnold R. Bitja Nyom ◽  
...  
Keyword(s):  
Author(s):  
Ryota Yasudo ◽  
Koji Nakano ◽  
Michihiro Koibuchi ◽  
Hiroki Matsutani ◽  
Hideharu Amano

2006 ◽  
Vol 56 (5) ◽  
pp. 1013-1018 ◽  
Author(s):  
Bénédicte Lafay ◽  
Erika Bullier ◽  
Jeremy J. Burdon

Rhizobial bacteria almost exclusively nodulate members of the families Fabaceae, Mimosaceae and Caesalpiniaceae, but are found on a single non-legume taxon, Parasponia (Ulmaceae). Based on their host-range, their nitrogen-fixing ability and strain competition experiments, bacterial strains isolated from Parasponia were thought to constitute a separate lineage that would account for their exceptional host affinity. This hypothesis was investigated by focusing on four isolates that are representative of the morphological and cultural types of Parasponia-nodulating bradyrhizobia. Their evolutionary relationships with other rhizobia were analysed using 16S rRNA gene sequences and their nodulation properties were explored using the nodA gene as a proxy for host-range specificity. Phylogenetic analyses of the 16S rRNA and nodA gene sequences revealed that bacterial isolates from Parasponia species are embedded among other bradyrhizobia. They did not cluster together in topologies based on the 16S rRNA or nodA gene sequences, but were scattered among other bradyrhizobia belonging to either the Bradyrhizobium japonicum or the Bradyrhizobium elkanii lineages. These data suggest that the ability of some bradyrhizobia to nodulate species of the genus Parasponia does not represent a historical relationship that predates the relationship between rhizobia and legumes, but is probably a more recent host switch for some rhizobia.


2018 ◽  
Vol 92 (13) ◽  
Author(s):  
Ianei de Oliveira Carneiro ◽  
Anna-Lena Sander ◽  
Namá Silva ◽  
Andres Moreira-Soto ◽  
Andrea Normann ◽  
...  

ABSTRACT The discovery of highly diverse nonprimate hepatoviruses illuminated the evolutionary origins of hepatitis A virus (HAV) ancestors in mammals other than primates. Marsupials are ancient mammals that diverged from other Eutheria during the Jurassic. Viruses from marsupials may thus provide important insight into virus evolution. To investigate Hepatovirus macroevolutionary patterns, we sampled 112 opossums in northeastern Brazil. A novel marsupial HAV (MHAV) in the Brazilian common opossum ( Didelphis aurita ) was detected by nested reverse transcription-PCR (RT-PCR). MHAV concentration in the liver was high, at 2.5 × 10 9 RNA copies/g, and at least 300-fold higher than those in other solid organs, suggesting hepatotropism. Hepatovirus seroprevalence in D. aurita was 26.6% as determined using an enzyme-linked immunosorbent assay (ELISA). Endpoint titers in confirmatory immunofluorescence assays were high, and marsupial antibodies colocalized with anti-HAV control sera, suggesting specificity of serological detection and considerable antigenic relatedness between HAV and MHAV. MHAV showed all genomic hallmarks defining hepatoviruses, including late-domain motifs likely involved in quasi-envelope acquisition, a predicted C-terminal pX extension of VP1, strong avoidance of CpG dinucleotides, and a type 3 internal ribosomal entry site. Translated polyprotein gene sequence distances of at least 23.7% from other hepatoviruses suggested that MHAV represents a novel Hepatovirus species. Conserved predicted cleavage sites suggested similarities in polyprotein processing between HAV and MHAV. MHAV was nested within rodent hepatoviruses in phylogenetic reconstructions, suggesting an ancestral hepatovirus host switch from rodents into marsupials. Cophylogenetic reconciliations of host and hepatovirus phylogenies confirmed that host-independent macroevolutionary patterns shaped the phylogenetic relationships of extant hepatoviruses. Although marsupials are synanthropic and consumed as wild game in Brazil, HAV community protective immunity may limit the zoonotic potential of MHAV. IMPORTANCE Hepatitis A virus (HAV) is a ubiquitous cause of acute hepatitis in humans. Recent findings revealed the evolutionary origins of HAV and the genus Hepatovirus defined by HAV in mammals other than primates in general and in small mammals in particular. The factors shaping the genealogy of extant hepatoviruses are unclear. We sampled marsupials, one of the most ancient mammalian lineages, and identified a novel marsupial HAV (MHAV). The novel MHAV shared specific features with HAV, including hepatotropism, antigenicity, genome structure, and a common ancestor in phylogenetic reconstructions. Coevolutionary analyses revealed that host-independent evolutionary patterns contributed most to the current phylogeny of hepatoviruses and that MHAV was the most drastic example of a cross-order host switch of any hepatovirus observed so far. The divergence of marsupials from other mammals offers unique opportunities to investigate HAV species barriers and whether mechanisms of HAV immune control are evolutionarily conserved.


1971 ◽  
Vol 45 (2-3) ◽  
pp. 229-235 ◽  
Author(s):  
G. K. Kinoti

Preliminary electron microscope observations have shown that in the miracidium of Schistosoma mattheei the surface of the apical epidermal plate consists of branching and anastomosing microvilli. It is suggested that this arboreal arrangement serves to attach the miracidium to the body surface of snail hosts during attempts to penetrate; the apical papilla can therefore be regarded as an attachment organ, functionally analogous to the suckers of the adult schistosome. It is also suggested that the degree of ‘fit’ between the attachment organ and the snail body surface may be an important factor determining the success of attempts by the miracidium to penetrate.Electron microscopy has also shown that the so-called penetration and apical glands are single flask-shaped cells. No endoplasmic reticulum and very few ribosomes were seen in these cells and it is therefore suggested that, in the mature (free-swimming) miracidium, the “glands” are not functional as such; they are simply sacs full of fluid. If they contain histolytic substances they must either have been synthesized at an earlier stage in the life history of the organism or they are synthesized elsewhere and passed into the “glands”.Histochemical attempts to identify leucine aminopeptidase and mucin in the contents of the “glands” of S. mansoni miracidia were unsuccessful. It is concluded that these substances probably do not play any role in the penetration into or attachment on snail intermediate hosts by S. mansoni miracidia.


Parasitology ◽  
2012 ◽  
Vol 139 (3) ◽  
pp. 406-417 ◽  
Author(s):  
M. VANACKER ◽  
G. MASSON ◽  
J-N. BEISEL

SUMMARYSampling of the fish community was carried out for 20 years in the Mirgenbach reservoir, in North-Eastern France. The prevalence and the mean intensity of Ligula intestinalis (Cestoda) were analysed in roach (Rutilus rutilus) and silver bream (Blicca bjoerkna) populations, the main two infected species. The aim of this study was to investigate the host switch from roach to silver bream and the consequences of L. intestinalis infestation in silver bream, which is an unusual host for this parasite as Ligula parasitism in silver bream appears to be rare. We analysed in detail the relationships between parasitism index (PI), gonadosomatic index (GSI), perivisceral fat abundance (PFA) and condition index (CI) in the silver bream population. In 1998, prevalence of L. intestinalis highlighted a clear host switch from roach to silver bream. In the silver bream population, young fish were the most severely infected and the impact of plerocercoids appeared to be different depending on the host sex. In male silver bream, plerocercoids drew energy from fat reserves even if GSI was also slightly impacted. On the contrary, in females energy was diverted from gonad maturation rather than from perivisceral fat reserves. No significant difference was observed in terms of CI in either sex.


Parasitology ◽  
2014 ◽  
Vol 142 (5) ◽  
pp. 675-679 ◽  
Author(s):  
CRYSTAL KELEHEAR ◽  
KRISTIN SALTONSTALL ◽  
MARK E. TORCHIN

SUMMARYThe pentastomid parasite, Raillietiella frenata, is native to Asia where it infects the Asian House gecko, Hemidactylus frenatus. This gecko has been widely introduced and recently R. frenata was found in introduced populations of cane toads (Rhinella marina) in Australia, indicating a host-switch from introduced geckos to toads. Here we report non-native adult R. frenata infecting the lungs of native cane toads in Panama. Eight of 64 toads were infected (median = 2·5, range = 1–80 pentastomids/toad) and pentastomid prevalence was positively associated with the number of buildings at a site, though further sampling is needed to confirm this pattern. We postulate that this pattern is likely due to a host shift of this parasite from an urban-associated introduced gecko. This is the first record of this parasite infecting cane toads in their native range, and the first instance of this parasite occurring in Central America.


Sign in / Sign up

Export Citation Format

Share Document