scholarly journals Understanding mosquito host-choice behaviour: a new and low-cost method of identifying the sex of human hosts from mosquito blood meals

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Fiona Teltscher ◽  
Sophie Bouvaine ◽  
Gabriella Gibson ◽  
Paul Dyer ◽  
Jennifer Guest ◽  
...  

Abstract Background Mosquito-borne diseases are a global health problem, causing hundreds of thousands of deaths per year. Pathogens are transmitted by mosquitoes feeding on the blood of an infected host and then feeding on a new host. Monitoring mosquito host-choice behaviour can help in many aspects of vector-borne disease control. Currently, it is possible to determine the host species and an individual human host from the blood meal of a mosquito by using genotyping to match the blood profile of local inhabitants. Epidemiological models generally assume that mosquito biting behaviour is random; however, numerous studies have shown that certain characteristics, e.g. genetic makeup and skin microbiota, make some individuals more attractive to mosquitoes than others. Analysing blood meals and illuminating host-choice behaviour will help re-evaluate and optimise disease transmission models. Methods We describe a new blood meal assay that identifies the sex of the person that a mosquito has bitten. The amelogenin locus (AMEL), a sex marker located on both X and Y chromosomes, was amplified by polymerase chain reaction in DNA extracted from blood-fed Aedes aegypti and Anopheles coluzzii. Results AMEL could be successfully amplified up to 24 h after a blood meal in 100% of An. coluzzii and 96.6% of Ae. aegypti, revealing the sex of humans that were fed on by individual mosquitoes. Conclusions The method described here, developed using mosquitoes fed on volunteers, can be applied to field-caught mosquitoes to determine the host species and the biological sex of human hosts on which they have blood fed. Two important vector species were tested successfully in our laboratory experiments, demonstrating the potential of this technique to improve epidemiological models of vector-borne diseases. This viable and low-cost approach has the capacity to improve our understanding of vector-borne disease transmission, specifically gender differences in exposure and attractiveness to mosquitoes. The data gathered from field studies using our method can be used to shape new transmission models and aid in the implementation of more effective and targeted vector control strategies by enabling a better understanding of the drivers of vector-host interactions.

2018 ◽  
Author(s):  
James Orsborne ◽  
Luis Furuya-Kanamori ◽  
Claire L. Jeffries ◽  
Mojca Kristan ◽  
Abdul Rahim Mohammed ◽  
...  

AbstractDifficulties with observing the dispersal of insect vectors in the field have hampered understanding of several aspects of their behaviour linked to disease transmission. Here, a novel method based on detection of blood-meal sources is introduced to inform two critical and understudied mosquito behaviours: plasticity in the malaria vector’s blood-host choice and vector dispersal. Strategically located collections of Anopheles coluzzii from a malaria-endemic village of southern Ghana showed statistically significant variation in host species composition of mosquito blood-meals. Trialling a new sampling approach gave the first estimates for the remarkably local spatial scale across which host choice is plastic. Using quantitative PCR, the blood-meal digestion was then quantified for field-caught mosquitoes and calibrated according to timed blood digestion in colony mosquitoes. We demonstrate how this new ‘molecular Sella score’ approach can be used to estimate the dispersal rate of blood-feeding vectors caught in the field.


2006 ◽  
Vol 3 (2) ◽  
pp. 113-117 ◽  
Author(s):  
Jérémy Bouyer ◽  
Mathieu Pruvot ◽  
Zacharia Bengaly ◽  
Patrick M Guerin ◽  
Renaud Lancelot

A learning capacity for feeding is described in many insect species including vectors of diseases, but has never been reported in tsetse flies (Diptera, Glossinidae), the cyclic vectors of human (sleeping sickness) and animal trypanosomoses in Africa. Repeated feeding on the same host species by a disease vector is likely to increase the within-species disease-transmission risk, but to decrease it between species. An experiment with cattle and reptiles in a stable provides evidence that the species of host selected for the second blood meal in tsetse flies depends on the host encountered for the first blood meal when the between-meal interval is 2 days. This preference disappears when the between-meal interval is extended to 3 days. The energetic advantages of this acquired preference and its importance in trypanosomoses epidemiology are discussed.


2017 ◽  
Vol 115 (5) ◽  
pp. 1009-1014 ◽  
Author(s):  
William E. Bradshaw ◽  
Joshua Burkhart ◽  
John K. Colbourne ◽  
Rudyard Borowczak ◽  
Jacqueline Lopez ◽  
...  

The spread of blood-borne pathogens by mosquitoes relies on their taking a blood meal; if there is no bite, there is no disease transmission. Although many species of mosquitoes never take a blood meal, identifying genes that distinguish blood feeding from obligate nonbiting is hampered by the fact that these different lifestyles occur in separate, genetically incompatible species. There is, however, one unique extant species with populations that share a common genetic background but blood feed in one region and are obligate nonbiters in the rest of their range: Wyeomyia smithii. Contemporary blood-feeding and obligate nonbiting populations represent end points of divergence between fully interfertile southern and northern populations. This divergence has undoubtedly resulted in genetic changes that are unrelated to blood feeding, and the challenge is to winnow out the unrelated genetic factors to identify those related specifically to the evolutionary transition from blood feeding to obligate nonbiting. Herein, we determine differential gene expression resulting from directional selection on blood feeding within a polymorphic population to isolate genetic differences between blood feeding and obligate nonbiting. We show that the evolution of nonbiting has resulted in a greatly reduced metabolic investment compared with biting populations, a greater reliance on opportunistic metabolic pathways, and greater reliance on visual rather than olfactory sensory input. W. smithii provides a unique starting point to determine if there are universal nonbiting genes in mosquitoes that could be manipulated as a means to control vector-borne disease.


2018 ◽  
Vol 5 (2) ◽  
pp. 171971 ◽  
Author(s):  
Shakir Bilal ◽  
Edwin Michael

We study implications of complexity and seasonality in vector–host epidemiological models exhibiting backward bifurcation. Vector–host diseases represent complex infection systems that can vary in the transmission processes and population stages involved in disease progression. Seasonal fluctuations in external forcing factors can also interact in a complex way with internal host factors to govern the transmission dynamics. In backward bifurcation, the insufficiency of R 0  < 1 for predicting the stability of the disease-free equilibrium (DFE) state arises due to existence of bistability (coexisting DFE and endemic equilibria) for a range of R 0 values below one. Here we report that this region of bistability decreases with increasing complexity of vector-borne disease transmission as well as with increasing seasonality strength. The decreases in the bistability region are accompanied by a reduced force of infection acting on primary hosts. As a consequence, we show counterintuitively that a more complex vector-borne disease may be easier to control in settings of high seasonality.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10221
Author(s):  
Sonny A. Bacigalupo ◽  
Linda K. Dixon ◽  
Simon Gubbins ◽  
Adam J. Kucharski ◽  
Julian A. Drewe

Wild animals are the source of many pathogens of livestock and humans. Concerns about the potential transmission of economically important and zoonotic diseases from wildlife have led to increased surveillance at the livestock-wildlife interface. Knowledge of the types, frequency and duration of contacts between livestock and wildlife is necessary to identify risk factors for disease transmission and to design possible mitigation strategies. Observing the behaviour of many wildlife species is challenging due to their cryptic nature and avoidance of humans, meaning there are relatively few studies in this area. Further, a consensus on the definition of what constitutes a ‘contact’ between wildlife and livestock is lacking. A systematic review was conducted to investigate which livestock-wildlife contacts have been studied and why, as well as the methods used to observe each species. Over 30,000 publications were screened, of which 122 fulfilled specific criteria for inclusion in the analysis. The majority of studies examined cattle contacts with badgers or with deer; studies involving wild pig contacts with cattle or with domestic pigs were the next most frequent. There was a range of observational methods including motion-activated cameras and global positioning system collars. As a result of the wide variation and lack of consensus in the definitions of direct and indirect contacts, we developed a unified framework to define livestock-wildlife contacts that is sufficiently flexible to be applied to most wildlife and livestock species for non-vector-borne diseases. We hope this framework will help standardise the collection and reporting of contact data; a valuable step towards being able to compare the efficacy of wildlife-livestock observation methods. In doing so, it may aid the development of better disease transmission models and improve the design and effectiveness of interventions to reduce or prevent disease transmission.


2021 ◽  
Author(s):  
Soumik Purkayastha ◽  
Rupam Bhattacharyya ◽  
Ritwik Bhaduri ◽  
Ritoban Kundu ◽  
Xuelin Gu ◽  
...  

Abstract BackgroundMany popular disease transmission models have helped nations respond to the COVID-19 pandemic by informing decisions about pandemic planning, resource allocation, implementation of social distancing measures and other non-pharmaceutical interventions. We study how five epidemiological models forecast and assess the course of the pandemic in India: a baseline model, an extended SIR (eSIR) model, two extended SEIR (SAPHIRE and SEIR-fansy) models, and a semi-mechanistic Bayesian hierarchical model (ICM). MethodsUsing COVID-19 data for India from March 15 to June 18 to train the models, we generate predictions from each of the five models from June 19 to July 18. To compare prediction accuracy with respect to reported cumulative and active case counts and cumulative death counts, we compute the symmetric mean absolute prediction error (SMAPE) for each of the five models. ResultsFor active case counts, SMAPE values are 0.72 (SEIR-fansy) and 33.83 (eSIR). For cumulative case counts, SMAPE values are 1.76 (baseline) 23. (eSIR), 2.07 (SAPHIRE) and 3.20 (SEIR-fansy). For cumulative death counts, the SMAPE values are 7.13 (SEIR-fansy) and 26.30 (eSIR). For cumulative cases and deaths, we compute Pearson’s and Lin’s correlation coefficients to investigate how well the projected and observed reported COVID-counts agree. Three models (SAPHIRE, SEIR-fansy and ICM) return total (sum of reported and unreported) counts as well. We compute underreporting factors as of June 30 and note that the SEIR-fansy model reports the highest underreporting factor for active cases (6.10) and cumulative deaths (3.62), while the SAPHIRE model reports the highest underreporting factor for cumulative cases (27.79).ConclusionsIn this comparative paper we describe five different models used to study full disease transmission of the SARS-Cov-2 disease transmission in India. While simulation studies are the only gold standard way to compare the accuracy of the models, here we were uniquely poised to compare the projected case-counts against observed data on a test period. Prediction of daily active number of cases does show appreciable variation across models. The largest variability across models is observed in predicting the “total” number of infections including reported and unreported cases. The degree of under-reporting has been a major concern in India.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Ephantus J. Muturi ◽  
Teresia M. Njoroge ◽  
Christopher Dunlap ◽  
Carla E. Cáceres

Abstract Background The guts of blood-sucking insects host a community of bacteria that can shift dramatically in response to biotic and abiotic factors. Identifying the key factors structuring these microbial communities has important ecological and epidemiological implications. Methods We used the yellow fever mosquito, Aedes aegypti, to investigate the impact of mixed blood meals on gut microbiota of vector mosquitoes. Adult females were experimentally fed on sugar or blood from chicken, rabbit or a mixture of chicken and rabbit blood, and their gut microbiota were characterized using 16S rRNA gene amplification and MiSeq sequencing. Results The gut bacterial communities of mosquitoes fed on the three blood meal treatments clustered separately, suggesting that host species identity and mixed blood-feeding are key determinants of gut bacterial community composition in mosquitoes. Mixed blood meal had a synergistic effect on both operational taxonomic unit (OTU) richness and the Shannon diversity index, suggesting that mixed blood-feeding can offset the nutritional deficit of blood meals from certain host species. The microbial communities observed in this study were distinct from those identified from similarly fed Ae. aegypti from our previous study. Conclusions These findings demonstrate that vector host-feeding preferences can influence gut microbial composition and diversity, which could potentially impact pathogen acquisition and transmission by the vector. The results also demonstrate that different microenvironmental conditions within the laboratory may play an important role in structuring the microbial communities of independently reared mosquito colonies.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Samoa Asigau ◽  
Sawsan Salah ◽  
Patricia G. Parker

Abstract Background Blood meal host selection by mosquito vectors is an important component in understanding disease dynamics of pathogens that threaten endemic fauna in isolated islands such as Galápagos. Research on the feeding behavior of mosquitoes can provide clues to the hosts and vectors involved in disease transmission. This information is particularly critical for endemic wildlife fauna in island systems that have evolved without resistance to novel diseases such as avian malaria. The aims of this study were to determine the blood-feeding patterns of two species of mosquitoes found in Galápagos and discuss how their feeding behavior may influence the transmission of pathogens such as avian malaria. Methods In the summer of 2015, we sampled two mosquito species (Aedes taeniorhynchus and Culex quinquefasciatus) across 18 different sites on Isla Santa Cruz, which is the second largest island in Galápagos and has the largest human population. We trapped mosquitoes using CDC light traps and CDC gravid traps and identified sources of blood meals for engorged mosquitoes by sequencing a portion of the vertebrate mitochondrial cytochrome b gene. Results Out of 947 female mosquitoes captured, 320 were blood-fed, and PCR amplifications were successful for 301 of the blood meals. Results revealed that both Aedes taeniorhynchus and Culex quinquefasciatus feed from a variety of vertebrate taxa, numerically dominated by humans on Isla Santa Cruz. Conclusions The high proportion of mammalian blood meals could represent locally available and abundant hosts on Santa Cruz. However, host surveys and estimates of relative abundances of vertebrate species will need to accompany mosquito trapping studies on non-inhabited and inhabited islands in Galápagos to further validate this.


2012 ◽  
Vol 102 (6) ◽  
pp. 692-697 ◽  
Author(s):  
J.H. Calvo ◽  
B. Berzal ◽  
C. Calvete ◽  
M.A. Miranda ◽  
R. Estrada ◽  
...  

AbstractBlood meal identification can provide information about the natural host-feeding patterns or preferences of Culicoides species. Such information could indirectly provide data indicating which reservoirs are significant in associated vector-borne diseases.We positively identified the host species through DNA sequencing of the cytochrome b gene in 144 of the 170 (84.7%) blood meal specimens tested. In the remaining samples, identification of the blood-meal source was unsuccessful, possibly due to the post-ingestion time prior to sampling or the availability of the species-specific cytochrome b gene sequences in the database. The majority of identified blood meals were derived from mammalian blood (95.8%), and only six contained chicken blood. We identified five species as mammalian hosts for Culicoides spp.: sheep (87.7%), human (6.5%), cattle (3.7%) and Savi's Pine Vole (Micrototus savii) (2.1%). The results suggested that large mammals, specifically ruminants, were most frequently fed upon by biting midges (Culicoides spp.), but evidence of opportunistic feeding behaviour was also found. Host feeding behaviour of Culicoides species may also be influenced by the relative abundance of a particular host species in the area being studied. In this sense, Savi's Pine Vole, a wild species, was found to be a locally relevant host and a putative reservoir for viruses transmitted by species of biting midges belonging to the Culicoides genus.Finally, feeding on multiple potential host species was observed. One midge acquired blood meals from human and chicken hosts, while four other midges fed on two different sheep.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Arturo Hernandez-Colina ◽  
Merit Gonzalez-Olvera ◽  
Emily Lomax ◽  
Freya Townsend ◽  
Amber Maddox ◽  
...  

Abstract Background Zoological gardens contain unique configurations of exotic and endemic animals and plants that create a diverse range of developing sites and potential sources of blood meals for local mosquitoes. This may imply unusual interspecific pathogen transmission risks involving zoo vertebrates, like avian malaria to captive penguins. Understanding mosquito ecology and host feeding patterns is necessary to improve mosquito control and disease prevention measures in these environments. Methods Mosquito sampling took place in Chester Zoo for 3 years (2017, 2018, and 2019) and for 1 year in Flamingo Land (2017) using different trapping methods. Blood-fed mosquitoes were identified and their blood meal was amplified by PCR, sequenced, and blasted for host species identification. Results In total, 640 blood-fed mosquitoes were collected [Culex pipiens (n = 497), Culiseta annulata (n = 81), Anopheles maculipennis s.l. (n = 7), An. claviger (n = 1), and unidentifiable (n = 55)]. Successful identification of the host species was achieved from 159 blood-fed mosquitoes. Mosquitoes fed on birds (n = 74), non-human mammals (n = 20), and humans (n = 71). There were mixed blood meals from two hosts (n = 6). The proportions of blood-fed mosquitoes varied across sampling seasons and sites within the zoos. The use of resting traps and aspiration of vegetation were more efficient techniques for capturing blood-fed mosquitoes than traps for host-seeking or gravid mosquitoes. By relating the locations of zoo vertebrates to where fed mosquitoes were trapped, the minimum travelling distances were calculated (13.7 to 366.7 m). Temperature, precipitation, relative humidity, proximity to zoo vertebrate exhibits, and vegetation level were found to be significantly associated with the proportion of captured blood-fed mosquitoes by generalized linear modelling. Conclusions Mosquito feeding behaviour in zoos is mainly influenced by time, location (sampling area), temperature, and host availability, which highlights the value of mosquito monitoring in complex settings to plan control strategies and potentially reduce inherent disease transmission risks for humans and threatened zoo vertebrates. Graphic abstract


Sign in / Sign up

Export Citation Format

Share Document