blood meal digestion
Recently Published Documents


TOTAL DOCUMENTS

23
(FIVE YEARS 8)

H-INDEX

10
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Bretta Hixson ◽  
Xiao-Li Bing ◽  
Xiaowei Yang ◽  
Alessandro Bonfini ◽  
Peter Nagy ◽  
...  

Mosquito vectors transmit numerous pathogens, but large gaps remain in our understanding of their physiology. To facilitate future explorations of mosquito biology, with specific attention to the major vector Aedes aegypti, we have created Aegypti-Atlas (http://aegyptiatlas.buchonlab.com/), an online resource hosting RNAseq profiles of Ae. aegypti body parts (head, thorax, abdomen, gut, Malpighian tubules, and ovaries), gut regions (crop, proventriculus, anterior and posterior midgut, and hindgut), and a time course of blood meal digestion in the gut. Using Aegypti-Atlas, we provide new insights into the regionalization of gut function, blood feeding response, and immune defenses. We find that the anterior and posterior regions of the mosquito midgut possess clearly delineated digestive specializations which are preserved in the blood-fed state. Blood feeding initiates the sequential transcriptional induction and repression/depletion of multiple cohorts of peptidases throughout blood meal digestion. With respect to defense, immune signaling components, but not recognition or effector molecules, show enrichment in ovaries. Basal expression of antimicrobial peptides is dominated by two genes, holotricin and gambicin, that are expressed in the carcass and the digestive tissues, respectively, in a near mutually exclusive manner. In the midgut, gambicin and other immune effector genes are almost exclusively expressed in the anterior regions, while the posterior midgut exhibits the hallmarks of immune tolerance. Finally, in a cross-species comparison between the midguts of Ae. aegypti and Anopheles gambiae, we observe that regional digestive and immune specializations are closely conserved, indicating that our data may yield inferences that are broadly relevant to multiple mosquito vector species. We further demonstrate that the expression of orthologous genes is highly correlated, with the exception of a ‘species signature’ comprising a small number of highly/disparately expressed genes. With this work, we show the potential of Aegypti-Atlas to unlock a more complete understanding of mosquito biology.


2021 ◽  
Vol 15 (11) ◽  
pp. e0010003
Author(s):  
Christie S. Herd ◽  
DeAna G. Grant ◽  
Jingyi Lin ◽  
Alexander W. E. Franz

Aedes aegypti is the primary vector of Zika virus (ZIKV), a flavivirus which typically presents itself as febrile-like symptoms in humans but can also cause neurological and pregnancy complications. The transmission cycle of mosquito-borne arboviruses such as ZIKV requires that various key tissues in the female mosquito including the salivary glands get productively infected with the virus before the mosquito can transmit the virus to another vertebrate host. Following ingestion of a viremic blood-meal from a vertebrate, ZIKV initially infects the midgut epithelium before exiting the midgut after blood-meal digestion to disseminate to secondary tissues including the salivary glands. Here we investigated whether smaller Ae. aegypti females resulting from food deprivation as larvae exhibited an altered vector competence for blood-meal acquired ZIKV relative to larger mosquitoes. Midguts from small ‘Starve’ and large ‘Control’ Ae. aegypti were dissected to visualize by transmission electron microscopy (TEM) the midgut basal lamina (BL) as physical evidence for the midgut escape barrier showing Starve mosquitoes with a significantly thinner midgut BL than Control mosquitoes at two timepoints. ZIKV replication was inhibited in Starve mosquitoes following intrathoracic injection of virus, however, Starve mosquitoes exhibited a significantly higher midgut escape and population dissemination rate at 9 days post-infection (dpi) via blood-meal, with more virus present in saliva and head tissue than Control by 10 dpi and 14 dpi, respectively. These results indicate that Ae. aegypti developing under stressful conditions potentially exhibit higher midgut infection and dissemination rates for ZIKV as adults, Thus, variation in food intake as larvae is potentially a source for variable vector competence levels of the emerged adults for the virus.


mSphere ◽  
2020 ◽  
Vol 5 (5) ◽  
Author(s):  
Iliano V. Coutinho-Abreu ◽  
James Oristian ◽  
Waldionê de Castro ◽  
Timothy R. Wilson ◽  
Claudio Meneses ◽  
...  

It is well established that the presence of LPG is sufficient to define the vector competence of restrictive sand fly vectors with respect to Leishmania parasites. However, the permissiveness of other sand flies with respect to multiple Leishmania species suggests that other factors might define vector competence for these vectors. In this study, we investigated the underpinnings of Leishmania infantum survival and development in its natural vector, Lutzomyia longipalpis. We found that LPG-mediated midgut binding persists in late-stage parasites. This observation is of relevance for the understanding of vector-parasite molecular interactions and suggests that only a subset of infective metacyclic-stage parasites (metacyclics) lose their ability to attach to the midgut, with implications for parasite transmission dynamics. However, our data also demonstrate that LPG is not a determining factor in Leishmania infantum retention in the midgut of Lutzomyia longipalpis, a permissive vector. Rather, LPG appears to be more important in protecting some parasite strains from the toxic environment generated during blood meal digestion in the insect gut. Thus, the relevance of LPG in parasite development in permissive vectors appears to be a complex issue and should be investigated on a strain-specific basis.


2019 ◽  
Vol 116 (43) ◽  
pp. 21501-21507 ◽  
Author(s):  
Guan-Heng Zhu ◽  
Yaoyu Jiao ◽  
Shankar C. R. R. Chereddy ◽  
Mi Young Noh ◽  
Subba Reddy Palli

The yellow fever mosquito, Aedes aegypti, vectors human pathogens. Juvenile hormones (JH) control almost every aspect of an insect’s life, and JH analogs are currently used to control mosquito larvae. Since RNA interference does not work efficiently during the larval stages of this insect, JH regulation of larval development and mode of action of JH analogs are not well studied. To overcome this limitation, we used a multiple single guide RNA-based CRISPR/Cas9 genome-editing method to knockout the methoprene-tolerant (Met) gene coding for a JH receptor. The Met knockout larvae exhibited a black larval phenotype during the L3 (third instar larvae) and L4 (fourth instar larvae) stages and died before pupation. However, Met knockout did not affect embryonic development or the L1 and L2 stages. Microscopy studies revealed the precocious synthesis of a dark pupal cuticle during the L3 and L4 stages. Gene expression analysis showed that Krüppel homolog 1, a key transcription factor in JH action, was down-regulated, but genes coding for proteins involved in melanization, pupal and adult cuticle synthesis, and blood meal digestion in adults were up-regulated in L4 Met mutants. These data suggest that, during the L3 and L4 stages, Met mediates JH suppression of pupal/adult genes involved in the synthesis and melanization of the cuticle and blood meal digestion. These results help to advance our knowledge of JH regulation of larval development and the mode of action of JH analogs in Ae. aegypti.


2019 ◽  
Author(s):  
Priscila Gonçalves Ferreira ◽  
Blanka Tesla ◽  
Elvira Cynthia Alves Horácio ◽  
Laila Alves Nahum ◽  
Melinda Ann Brindley ◽  
...  

AbstractVector-borne flaviviruses are emerging threats to human health. For successful transmission, the virus needs to efficiently enter mosquito cells, replicate within, and escape several tissue barriers while mosquitoes elicit major transcriptional responses to flavivirus infection. This process will not only be affected by the specific mosquito-pathogen pairing, but also variation in key environmental variables such as temperature. Thus far, few studies have examined the molecular responses triggered by temperature and how these responses modify infection outcomes despite substantial evidence showing strong relationships between temperature and transmission in a diversity of systems. To define the host transcriptional changes associated with temperature variation during the early infection process, we compared the transcriptome of mosquito midgut samples from mosquitoes exposed to Zika virus (ZIKV) and non-exposed mosquitoes housed at three different temperatures (20, 28, and 36°C). While the high temperature samples did not have significant changes from standard rearing conditions (28°C) 48 hr post-exposure, the transcriptome profile of mosquitoes housed at 20°C was dramatically different. The expression of genes most altered by the cooler temperature involved aspects of blood-meal digestion, ROS metabolism, and mosquito innate immunity. Further, we did not find significant differences in the viral RNA copy number between 24 and 48 hr post-exposure at 20°C, suggesting ZIKV replication is limited by cold-induced changes to the mosquito midgut environment. In ZIKV-exposed mosquitoes, vitellogenin, a lipid carrier protein, was the most up-regulated at 20°C. Our results provide a deeper understanding of the temperature-triggered transcriptional changes in Aedes aegypti and can be used to further define the molecular mechanisms driven by environmental temperature variation.Contribution to the Field StatementA variety of methods for engineering refractory mosquitoes are currently being studied and show promise for disease control. Although considerable effort has been put into understanding the immune system of mosquitoes in response to infections, almost nothing is understood about environmental influences in regulating these responses. Here, we used RNA sequencing to study the effect of temperature on the mosquito transcriptome profile, as well as assess the changes in the immune response to ZIKV infection at three different temperatures. We found a remarkable effect of temperature on the transcriptome profile of mosquitoes exposed to cool conditions (20°C) after imbibing a blood meal, as well as accumulation of transcripts involved with different mechanisms associated with blood meal digestion, metabolism, and some components of the immune response in mosquitoes. Our results provide new insights in potential mechanisms that limit temperature-driven pathogen establishment and replication within the mosquito vector.


2019 ◽  
Vol 12 (1) ◽  
Author(s):  
Xuemei Li ◽  
Jinyu Yang ◽  
Qian Pu ◽  
Xinyue Peng ◽  
Lili Xu ◽  
...  

Abstract Background Female Aedes aegypti mosquitoes are vectors of arboviruses that cause diverse diseases of public health significance. Blood protein digestion by midgut proteases provides anautogenous mosquitoes with the nutrients essential for oocyte maturation and egg production. Midgut-specific miR-1174 affects the functions of the midgut through its target gene serine hydroxymethyltransferase (SHMT). However, less is known about SHMT-regulated processes in blood digestion by mosquitoes. Methods RNAi of SHMT was realized by injection of the double-stranded RNA at 16 h post-eclosion. The expression of SHMT at mRNA level and protein level was assayed by real-time PCR and Western blotting, respectively. Statistical analyses were performed with GraphPad7 using Student’s t-test. Results Here, we confirmed that digestion of blood was inhibited in SHMT RNAi-silenced female A. aegypti mosquitoes. Evidence is also presented that all SHMT-depleted female mosquitoes lost their flight ability and died within 48 h of a blood meal. Furthermore, most examined digestive enzymes responded differently in their transcriptional expression to RNAi depletion of SHMT, with some downregulated, some upregulated and some remaining stable. Phylogenetic analysis showed that transcriptional expression responses to SHMT silence were largely unrelated to the sequence similarity between these enzymes. Conclusions Overall, this research shows that SHMT was expressed at a low level in the midgut of Aedes aegypti mosquitoes, but blood-meal digestion was inhibited when SHMT was silenced. Transcriptional expressions of different digestive enzymes were affected in response to SHMT depletion, suggesting that SHMT is required for the blood-meal digestion in the midgut and targeting SHMT could provide an effective strategy for vector mosquito population control.


2018 ◽  
Author(s):  
James Orsborne ◽  
Luis Furuya-Kanamori ◽  
Claire L. Jeffries ◽  
Mojca Kristan ◽  
Abdul Rahim Mohammed ◽  
...  

AbstractDifficulties with observing the dispersal of insect vectors in the field have hampered understanding of several aspects of their behaviour linked to disease transmission. Here, a novel method based on detection of blood-meal sources is introduced to inform two critical and understudied mosquito behaviours: plasticity in the malaria vector’s blood-host choice and vector dispersal. Strategically located collections of Anopheles coluzzii from a malaria-endemic village of southern Ghana showed statistically significant variation in host species composition of mosquito blood-meals. Trialling a new sampling approach gave the first estimates for the remarkably local spatial scale across which host choice is plastic. Using quantitative PCR, the blood-meal digestion was then quantified for field-caught mosquitoes and calibrated according to timed blood digestion in colony mosquitoes. We demonstrate how this new ‘molecular Sella score’ approach can be used to estimate the dispersal rate of blood-feeding vectors caught in the field.


2017 ◽  
Author(s):  
Lena Lampe ◽  
Elena A. Levashina

ABSTRACTAnopheles gambiae mosquitoes transmit the human malaria parasite Plasmodium falciparum, which causes the majority of fatal malaria cases worldwide. The hematophagous life style defines the mosquito reproductive biology and is exploited by P. falciparum for its own sexual reproduction and transmission. The two main phases of the mosquito reproductive cycle, pre-vitellogenic (PV) and post-blood meal (PBM) shape its capacity to transmit malaria. Transition between these phases is tightly coordinated to ensure homeostasis between mosquito tissues and successful reproduction. One layer of control is provided by microRNAs, well known regulators of blood meal digestion and egg development in Aedes mosquitoes. Here, we report a global overview of tissue-specific miRNA expression during the PV and PBM phases and identify miRNAs regulated during PV to PBM transition. The observed coordinated changes in the expression levels of a set of miRNAs in the energy-storing tissues suggest a role in the regulation of blood meal-induced metabolic changes.


Sign in / Sign up

Export Citation Format

Share Document