scholarly journals An update on the distribution of Glossina (tsetse flies) at the wildlife-human-livestock interface of Akagera National Park, Rwanda

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Richard S. Gashururu ◽  
Samuel M. Githigia ◽  
Methode N. Gasana ◽  
Richard Habimana ◽  
Ndichu Maingi ◽  
...  

Abstract Background Glossina (tsetse flies) biologically transmit trypanosomes that infect both humans and animals. Knowledge of their distribution patterns is a key element to better understand the transmission dynamics of trypanosomosis. Tsetse distribution in Rwanda has not been well enough documented, and little is known on their current distribution. This study determined the current spatial distribution, abundance, diversity, and seasonal variations of tsetse flies in and around the Akagera National Park. Methods A longitudinal stratified sampling following the seasons was used. Biconical traps were deployed in 55 sites for 6 consecutive days of each study month from May 2018 to June 2019 and emptied every 48 h. Flies were identified using FAO keys, and the number of flies per trap day (FTD) was used to determine the apparent density. Pearson chi-square (χ2) and parametrical tests (t-test and ANOVA) were used to determine the variations between the variables. The significance (p < 0.05) at 95% confidence interval was considered. Logistic regression was used to determine the association between tsetse occurrence and the associated predictors. Results A total of 39,516 tsetse flies were collected, of which 73.4 and 26.6% were from inside Akagera NP and the interface area, respectively. Female flies accounted for 61.3 while 38.7% were males. Two species were identified, i.e. G. pallidipes [n = 29,121, 7.4 flies/trap/day (FTD)] and G. morsitans centralis (n = 10,395; 2.6 FTD). The statistical difference in numbers was significant between the two species (p = 0.000). The flies were more abundant during the wet season (15.8 FTD) than the dry season (4.2 FTD). Large numbers of flies were trapped around the swamp areas (69.1 FTD) inside the park and in Nyagatare District (11.2 FTD) at the interface. Glossina morsitans was 0.218 times less likely to occur outside the park. The chance of co-existing between the two species reduced outside the protected area (0.021 times). Conclusions The occurrence of Glossina seems to be limited to the protected Akagera NP and a narrow band of its surrounding areas. This finding will be crucial to design appropriate control strategies. Glossina pallidipes was found in higher numbers and therefore is conceivably the most important vector of trypanosomosis. Regional coordinated control and regular monitoring of Glossina distribution are recommended. Graphic Abstract

2021 ◽  
Author(s):  
Richard S. Gashururu ◽  
Samuel M. Githigia ◽  
Methode N Gasana ◽  
Richard Habimana ◽  
Ndichu Maingi ◽  
...  

Abstract BackgroundGlossina (Tsetse flies) biologically transmit trypanosomes that infect both humans and animals. Knowledge of their distribution patterns is a key element to better understand the transmission dynamics of trypanosomosis. Tsetse distribution in Rwanda has not been well enough documented and little is known of their current distribution. This study determined the current spatial distribution, abundance, diversity, and seasonal variations of tsetse flies in and around the Akagera National Park.MethodsA longitudinal stratified sampling, following the seasons was used. Biconical traps were deployed in 55 sites for six consecutive days of each study month from May 2018 to June 2019, and emptied every 48hours. Flies were identified using FAO keys and the number of flies per trap day (FTD) was used to determine the apparent density. Pearson chi-square (χ2) and parametrical tests (t-test and ANOVA) were used to determine the variations between the variables. The significance (p< 0.05) at 95% confidence interval was considered. Logistic regression was used to determine the association between tsetse occurrence and the associated predictors. Results39,516 tsetse flies were collected, of which 73.4% and 26.6% were from inside Akagera NP and the interface area respectively. Female flies accounted for 61.3% while 38.7% were males. Two species were identified, i.e. G. pallidipes [n=29,121, 7.4 flies/trap/day (FTD)] and G. morsitans centralis (n=10,395; 2.6 FTD). The statistical difference in numbers was significant between the two species (p=0.000). The flies were more abundant during the wet season (15.8 FTD) than the dry season (4.2 FTD). Large numbers of flies were trapped around the swamp areas (69.1 FTD) inside the park and in Nyagatare District (11.2 FTD) at the interface. Glossina morsitans was 0.218 times less likely to occur outside the park. The chance of co-existing between the two species reduced outside the protected area (0.021 times).ConclusionsThe occurrence of Glossina seems to be limited to the protected Akagera NP and a narrow band in its surroundings. This finding will be crucial to design appropriate control strategies. Glossina pallidipes was found in higher numbers and therefore conceivably the most important vector of trypanosomosis. Regional coordinated control and regular monitoring of Glossina distribution are recommended.


Author(s):  
Imna I. Malele ◽  
Johnson O. Ouma ◽  
Hamisi S. Nyingilili ◽  
Winston A. Kitwika ◽  
Deusdedit J. Malulu ◽  
...  

This study was conducted to determine the efficiency of different tsetse traps in 28 sites across Tanzania. The traps used were biconical, H, NGU, NZI, pyramidal, S3, mobile, and sticky panels. Stationary traps were deployed at a distance of 200 m apart and examined 72 h after deployment. The results showed that 117 (52.2%) out of the 224 traps deployed captured at least one Glossina species. A total of five Glossina species were captured, namely Glossina brevipalpis, Glossina pallidipes, Glossina swynnertoni, Glossina morsitans, and Glossina fuscipes martinii. Biconical traps caught tsetse flies in 27 sites, pyramidal in 26, sticky panel in 20, mobile in 19, S3 in 15, NGU in 7, H in 2 and NZI in 1. A total of 21 107 tsetse flies were trapped, with the most abundant species being G. swynnertoni (55.9%), followed by G. pallidipes (31.1%), G. fuscipes martinii (6.9%) and G. morsitans (6.0%). The least caught was G. brevipalpis (0.2%). The highest number of flies were caught by NGU traps (32.5%), followed by sticky panel (16%), mobile (15.4%), pyramidal (13.0%), biconical (11.3%) and S3 (10.2%). NZI traps managed to catch 0.9% of the total flies and H traps 0.7%. From this study, it can be concluded that the most efficient trap was NGU, followed by sticky panel and mobile, in that order. Therefore, for tsetse fly control programmes, NGU traps could be the better choice. Conversely, of the stationary traps, pyramidal and biconical traps captured tsetse flies in the majority of sites, covering all three ecosystems better than any other traps; therefore, they would be suitable for scouting for tsetse infestation in any given area, thus sparing the costs of making traps for each specific Glossina species.Keywords: tseste; traps; densties; Glossina; mobile; stationary; Tanzania


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Stella Gachoki ◽  
Thomas Groen ◽  
Anton Vrieling ◽  
Michael Okal ◽  
Andrew Skidmore ◽  
...  

Abstract Background African trypanosomiasis, which is mainly transmitted by tsetse flies (Glossina spp.), is a threat to public health and a significant hindrance to animal production. Tools that can reduce tsetse densities and interrupt disease transmission exist, but their large-scale deployment is limited by high implementation costs. This is in part limited by the absence of knowledge of breeding sites and dispersal data, and tools that can predict these in the absence of ground-truthing. Methods In Kenya, tsetse collections were carried out in 261 randomized points within Shimba Hills National Reserve (SHNR) and villages up to 5 km from the reserve boundary between 2017 and 2019. Considering their limited dispersal rate, we used in situ observations of newly emerged flies that had not had a blood meal (teneral) as a proxy for active breeding locations. We fitted commonly used species distribution models linking teneral and non-teneral tsetse presence with satellite-derived vegetation cover type fractions, greenness, temperature, and soil texture and moisture indices separately for the wet and dry season. Model performance was assessed with area under curve (AUC) statistics, while the maximum sum of sensitivity and specificity was used to classify suitable breeding or foraging sites. Results Glossina pallidipes flies were caught in 47% of the 261 traps, with teneral flies accounting for 37% of these traps. Fitted models were more accurate for the teneral flies (AUC = 0.83) as compared to the non-teneral (AUC = 0.73). The probability of teneral fly occurrence increased with woodland fractions but decreased with cropland fractions. During the wet season, the likelihood of teneral flies occurring decreased as silt content increased. Adult tsetse flies were less likely to be trapped in areas with average land surface temperatures below 24 °C. The models predicted that 63% of the potential tsetse breeding area was within the SHNR, but also indicated potential breeding pockets outside the reserve. Conclusion Modelling tsetse occurrence data disaggregated by life stages with time series of satellite-derived variables enabled the spatial characterization of potential breeding and foraging sites for G. pallidipes. Our models provide insight into tsetse bionomics and aid in characterising tsetse infestations and thus prioritizing control areas. Graphical abstract


Author(s):  
Diane Debinski

The reintroduction of wolves into Grand Teton National Park has the potential of affecting species distribution patterns from the large ungulates down to the insect and plant communities. Trophic cascades, as these effects are called, epitomize the interconnectedness of ecological communities. My research team has been studying montane meadow biodiversity of plants, birds, and butterflies in the Grand Teton National Park since 1996. We have used satellite imagery to classify meadows along a moisture gradient into six categories (Ml-M6). Hydric meadows are dominated by willows and sedges, mesic meadows have a diversity of grasses and flowering plants, and xeric meadows are dominated by sagebrush and grasses. These meadows are important reservoirs of biodiversity in the arid Rocky Mountain ecosystems. We have identified a suite of species in each taxonomic group that are tightly linked with each of the meadow types. We expect that as wolves move into Grand Teton National Park and the surrounding areas, there will be changes in herbivory and species distribution patterns that will cascade through the system. This research will focus on monitoring montane meadow communities to test for trophic cascades in the willow and bird communities.


2020 ◽  
Author(s):  
Mallion Kangume ◽  
Denis Muhangi ◽  
Joseph Byaruhanga ◽  
Aggrey Agaba ◽  
Joachim Sserunkuma ◽  
...  

Abstract Background: African Animal Trypanosomiasis (AAT) is an infectious disease of economic and veterinary importance in Sub-Saharan Africa. The current study aimed at providing baseline information on tsetse fly distribution and occurrence of Trypanosoma species in cattle and goats within and around Queen Elizabeth National Park (QENP), in western Uganda. A minimal entomological survey was conducted in April 2017 while blood samples collected from cattle (n = 576) and goats (n = 319) in June 2015 and May 2017 were subjected to Polymerase Chain Reaction (PCR) to determine the occurrence of Trypanosoma species.Results: Glossina pallidipes and G. fuscipes were the only tsetse fly species trapped in the study area with apparent density of 20.6. The overall prevalence of Trypanosoma spp. was 27% for goats and approximately 38% for cattle. The most prevalent Trypanosoma spp. in goats was T. brucei (n = 60, 18.8%) while the most prevalent in cattle was T. congolense (n = 102, 27.1%). In both cattle and goats, a dual infection of T. brucei + T. congolense was most encountered. In goats a triple infection of T. brucei + T. congolense + T. vivax was higher than that in cattle. Conclusions: Current findings show that there are two species of tsetse flies, and three species of Trypanosoma, important in transmission of AAT in both cattle and goats. Control efforts of AAT have mainly focused on cattle and this study proves that prevention and control efforts should also involve goat farmers.


Biota ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 1-13
Author(s):  
Dimas Prasaja

Pandanus species is widely distributed over Bukit Duabelas National Park in Jambi. Suku Anak Dalam (SAD), a local community living in Bukit Duabelas National Park area, use the natural fibers from Pandanus for many necessities, such as plaiting, building materials, and performing mytological rituals. This study aimed to examine floristic composition, distribution patterns, and association of pandanus species in Bukit Duabelas National Park. Sampling was conducted using a striped line, with a plot of 35 sample plots. Dominance of species was calculated using dominant type of important Value Index (IVI) based on the density, frequency, and dominance of sample plot enumeration. Distribution patterns was analyzed using the Morisita Index, while association patterns were measured by Contingency tables and Chi-square tests. Floristic composition was mostly found in the seedling strata consisting of 106 species. The species with highest important value index (IVI=14.53) was Palaquium gutta. There were two species of Pandanus (Benstonea kurzii and Benstonea atrocarpa) were spread in groups and three species of pandanus (Pandanus labyrinthicus, Pandanus furcatus, and Pandanus immersus) were spread evenly. The pandanus species found was associated with Benstonea kurzii was Litsea sp1. This present study suggested that the conservation of pandanus species should be conducted as a piece of rehabilitation of tropical forests in Bukit Duabelas National Park.


1999 ◽  
Vol 89 (6) ◽  
pp. 569-578 ◽  
Author(s):  
G.A. Vale ◽  
G. Mutika ◽  
D.F. Lovemore

AbstractBioassays in Zimbabwe with wild-caught Glossina pallidipes Austen and G. morsitans morsitans Westwood showed that formulations of deltamethrin (Decatix, SpotOn and an experimental variant of SpotOn), alphacypermethrin (Renegade) and cyfluthrin (Cylence) applied to oxen at the manufacturers' recommended doses gave knockdowns above 50% for 5–24 days in hot months and 24–55 days at cooler seasons. Within these periods, the average knockdowns were 77–86% with deltamethrin, 74% with alphacypermethrin and 59% with cyfluthrin. None of the insecticides affected the numbers of tsetse attracted to oxen from a distance, the proportion of tsetse that engorged, and the alighting responses on cloth screens. In the hot season most tsetse engorged on the belly. At other times the front legs were preferred, especially in the wet season and for a few months after. Chemical assays indicated that insecticide persisted at greatest concentration on the backs of oxen and least on the legs. Modelling the experimental data suggested that 4–21 annual applications of insecticide in areas >1000 km2 would give good control at least 10 km from the invasion source if the treated cattle contributed at least 50% of tsetse diet. No treatment regime under any diet conditions would give good control near an invasion front. Insecticide at concentrations up to 0.15 ppm occurred in dung from treated oxen for up 12 days post-treatment. Dead beetles occurred in and near fresh dung.


2021 ◽  
Vol 18 (1) ◽  
pp. 33-38
Author(s):  
A.O. Omonona ◽  
S.A. Abioye ◽  
P.O. Odeniran ◽  
I.O. Ademola

Tsetse fly infestation in national parks is a major health risk to both the wildlife and tourists coming to sub-Saharan Africa. However, information on distribution and diversity of tsetse flies and trypanosome infection rate in Protected Areas like Old Oyo National Park in south-west Nigeria is largely unknown. Thus, the study evaluates distribution and diversity of tsetse flies in Magurba Range of Old Oyo National Park. Twelve Nzi traps were set at 50 m equidistance to capture Glossina species for a period of six months between February and August, 2019, considering both the altitudinal and ecological significance. A total of 136 tsetse flies belonging to four species; G. palpalis, G. tachinoides, G. morsitans and G. fusca; were captured. More Glossina species were captured during dry season 77.9% (70.0-84.6) than the wet season 22.1% (15.4-30.0). There was significant difference (p = 0.0001; x2 = 84.9; OR = 12.5) between the proportion of Glossina species captured at the riverine areas (106; 77.9%) and the woodland/forest areas (30; 22.1%). Glossina captured at ground level and 30 cm above ground were 71 (52.2 %) and 65 (47.8%) respectively. The overall prevalence of trypanosome infection (2.94%) was observed for Glossina spp. The presence of infected Glossina spp. indicated an urgent need to establish a concise strategic vector control in National Parks, in order to reduce the risk of transmission to both wildlife and humans in the area. The park is frequently visited by tourists, rangers, researchers and students for educational purposes. Keywords: Glossina spp.; Trypanosoma spp.; vector distribution; Old Oyo National Park


2021 ◽  
Author(s):  
Mouhamadou M. Dieng ◽  
Kiswend-sida M. Dera ◽  
Percy Moyaba ◽  
Gisele M. S. Ouedraogo ◽  
Guler Demirbas-Uzel ◽  
...  

Abstract Tsetse flies, the vectors of African Trypanosoma, have a highly regulated and defined microbial fauna composed of three bacterial symbionts that may have a role to play in the establishment of Trypanosoma infections in the flies and hence, may influence the vectorial competence of the released sterile males. Sodalis bacteria seem to interact with Trypanosoma infection in tsetse flies. Field-caught tsetse flies of ten different taxa and from 15 countries were screened using PCR to detect the presence of Sodalis and Trypanosoma species and their interaction. The results indicate that the prevalence of Sodalis and Trypanosoma varied with country and tsetse species. Trypanosome prevalence was higher in east, central and southern African countries than in west African countries. Tsetse fly infection rates with Trypanosoma vivax and Trypanozoon spp were higher in west African countries, whereas tsetse infection with Trypanosoma congolense and T. simiae, T. simiae (tsavo) and T. godfreyi infection prevalence were higher in east, central and south African countries. Sodalis prevalence was high in Glossina morsitans morsitans and G. pallidipes but absent in Glossina tachinoides. Double and triple infections with Trypanosoma taxa and coinfection of Sodalis and Trypanosoma were rarely observed but it occurs in some taxa and locations. A significant Chi square value (< 0.05) seems to suggest that Sodalis and Trypanosoma infection correlate in Glossina palpalis gambiensis, Glossina pallidipes and Glossina medicorum. Trypanosoma infection significantly increased the density of Sodalis in wild G. m. morsitans and G. pallidipes flies however no significant impact of Sodalis infection on trypanosome density.


Sign in / Sign up

Export Citation Format

Share Document