scholarly journals A comparative analysis of L1 retrotransposition activities in human genomes suggests an ongoing increase in L1 number despite an evolutionary trend towards lower activity

Mobile DNA ◽  
2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sawsan Sami Wehbi ◽  
Heinrich zu Dohna

Abstract Background LINE-1 (Long Interspersed Nuclear Elements, L1) retrotransposons are the only autonomously active transposable elements in the human genome. The evolution of L1 retrotransposition rates and its implications for L1 dynamics are poorly understood. Retrotransposition rates are commonly measured in cell culture-based assays, but it is unclear how well these measurements provide insight into L1 population dynamics. This study applied comparative methods to estimate parameters for the evolution of retrotransposition rates, and infer L1 dynamics from these estimates. Results Our results show that the rates at which new L1s emerge in the human population correlate positively to cell-culture based retrotransposition activities, that there is an evolutionary trend towards lower retrotransposition activity, and that this evolutionary trend is not sufficient to counter-balance the increase in active L1s resulting from continuing retrotransposition. Conclusions Together, these findings support a model of the population-level L1 retrotransposition dynamics that is consistent with prior expectations and indicate the remaining gaps in the understanding of L1 dynamics in human genomes.

2021 ◽  
Author(s):  
Sawsan Sami Wehbi ◽  
Heinrich zu Dohna

Abstract BackgroundLINE-1 (Long Interspersed Nuclear Elements, L1) retrotransposons are the only autonomously active transposable elements in the human genome. The evolution of L1 retrotransposition rates and its implications for L1 dynamics are poorly understood. Retrotransposition rates are commonly measured in cell culture-based assays, but it is unclear how well these measurements provide insight into L1 population dynamics. This study applied comparative methods to estimate parameters for the evolution of retrotransposition rates, and infer L1 dynamics from these estimates.ResultsOur results show that the rates at which new L1s emerge in the human population correlate positively to cell-culture based retrotransposition activities, that there is an evolutionary trend towards lower retrotransposition activity, and that this evolutionary trend is not sufficient to counter-balance the increase in L1s resulting from continuing retrotransposition. ConclusionsTogether, these findings support a model of the population-level L1 retrotransposition dynamics that is consistent with prior expectations and indicate the remaining gaps in the understanding of L1 dynamics in human genomes.


2021 ◽  
pp. 193896552110144
Author(s):  
Da Shi ◽  
Bowen Yi ◽  
Fangfang Shi ◽  
Simone Satta

This study investigates the motivation configuration of bluxury tourism behavior. According to complexity theory and push and pull motivation theory, we establish a framework of complex configuration conditions, including push forces, pull forces, and constraints that lead to bluxury tourism. Based on fuzzy-set qualitative comparative analysis, we identified seven main motivation configurations of bluxury tourism behavior covering three core factors: physical factors, seeking/exploration in push forces, and intangible factors in pull forces. In addition, combinations of constraints in the configuration demonstrate various paths leading to bluxury tourism behavior. These findings provide unique insight into bluxury tourism participation.


Transport ◽  
2009 ◽  
Vol 24 (3) ◽  
pp. 192-199 ◽  
Author(s):  
Ilona Jaržemskienė

The measurement of terminal productivity is the issue of extreme importance to both terminal owners and management and customers. As the sector of transport is highly intensive in terms of investments into the infrastructure, the productivity of a terminal may play a crucial role in competing with other terminals. Productivity is defined in terms of inputs and output. The majority of the available studies, wherein this issue is addressed, are generally focused on the determination of functional dependence between inputs and output using the method of regressive analysis. The present article provides an insight into the Data Envelopment Analysis method as a tool for measuring productivity. This technique enables a rather accurate evaluation of terminal productivity by means of comparative analysis, which, in fact, appears to be the only feasible alternative in cases where statistic data required for performing regressive analysis is lacking.


2011 ◽  
Vol 73 (3-4) ◽  
pp. 230-243 ◽  
Author(s):  
Marie Dufresne ◽  
Olivier Lespinet ◽  
Marie-Josée Daboussi ◽  
Aurélie Hua-Van

2012 ◽  
Vol 279 (1746) ◽  
pp. 4505-4512 ◽  
Author(s):  
Hannah J. Tidbury ◽  
Alex Best ◽  
Mike Boots

Exposure to low doses of pathogens that do not result in the host becoming infectious may ‘prime’ the immune response and increase protection to subsequent challenge. There is increasing evidence that such immune priming is a widespread and important feature of invertebrate host–pathogen interactions. Immune priming clearly has implications for individual hosts but will also have population-level implications. We present a susceptible–primed–infectious model—in contrast to the classic susceptible–infectious–recovered framework—to investigate the impacts of immune priming on pathogen persistence and population stability. We describe impacts of immune priming on the epidemiology of the disease in both constant and seasonal environments. A key result is that immune priming may act to destabilize population dynamics. In particular, when the proportion of individuals becoming primed rather than infected is high, but this priming does not confer full immunity, the population may be strongly destabilized through the generation of limit cycles. We discuss the implications of our model both in the context of invertebrate immunity and more widely.


Sign in / Sign up

Export Citation Format

Share Document