scholarly journals Agrobacterium-mediated transient transformation of sorghum leaves for accelerating functional genomics and genome editing studies

2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Rita Sharma ◽  
Yan Liang ◽  
Mi Yeon Lee ◽  
Venkataramana R. Pidatala ◽  
Jenny C. Mortimer ◽  
...  
aBIOTECH ◽  
2021 ◽  
Author(s):  
Jun Li ◽  
Yan Li ◽  
Ligeng Ma

AbstractCommon wheat (Triticum aestivum L.) is one of the three major food crops in the world; thus, wheat breeding programs are important for world food security. Characterizing the genes that control important agronomic traits and finding new ways to alter them are necessary to improve wheat breeding. Functional genomics and breeding in polyploid wheat has been greatly accelerated by the advent of several powerful tools, especially CRISPR/Cas9 genome editing technology, which allows multiplex genome engineering. Here, we describe the development of CRISPR/Cas9, which has revolutionized the field of genome editing. In addition, we emphasize technological breakthroughs (e.g., base editing and prime editing) based on CRISPR/Cas9. We also summarize recent applications and advances in the functional annotation and breeding of wheat, and we introduce the production of CRISPR-edited DNA-free wheat. Combined with other achievements, CRISPR and CRISPR-based genome editing will speed progress in wheat biology and promote sustainable agriculture.


2018 ◽  
Vol 26 (6) ◽  
pp. 964-972 ◽  
Author(s):  
San‐Yuan Ma ◽  
Guy Smagghe ◽  
Qing‐You Xia

PeerJ ◽  
2022 ◽  
Vol 10 ◽  
pp. e12664
Author(s):  
Sen Zhang ◽  
Shaoping Wu ◽  
Chunhua Hu ◽  
Qiaosong Yang ◽  
Tao Dong ◽  
...  

The CRISPR/Cas9-mediated genome editing system has been used extensively to engineer targeted mutations in a wide variety of species. Its application in banana, however, has been hindered because of the species’ triploid nature and low genome editing efficiency. This has delayed the development of a DNA-free genome editing approach. In this study, we reported that the endogenous U6 promoter and banana codon-optimized Cas9 apparently increased mutation frequency in banana, and we generated a method to validate the mutation efficiency of the CRISPR/Cas9-mediated genome editing system based on transient expression in protoplasts. The activity of the MaU6c promoter was approximately four times higher than that of the OsU6a promoter in banana protoplasts. The application of this promoter and banana codon-optimized Cas9 in CRISPR/Cas9 cassette resulted in a fourfold increase in mutation efficiency compared with the previous CRISPR/Cas9 cassette for banana. Our results indicated that the optimized CRISPR/Cas9 system was effective for mutating targeted genes in banana and thus will improve the applications for basic functional genomics. These findings are relevant to future germplasm improvement and provide a foundation for developing DNA-free genome editing technology in banana.


2020 ◽  
Author(s):  
Khaista Rahman ◽  
Muhammad Jamal ◽  
Xi Chen ◽  
Wei Zhou ◽  
Bin Yang ◽  
...  

AbstractMycobacterium tuberculosis (M.tb) causes the current leading infectious disease. Examination of the functional genomics of M.tb and development of drugs and vaccines are hampered by the complicated and time-consuming genetic manipulation techniques for M.tb. Here, we reprogrammed M.tb endogenous type III-A CRISPR-Cas10 system for simple and efficient gene editing, RNA interference and screening via simple delivery of a plasmid harboring a mini-CRISPR array, thereby avoiding the introduction of exogenous proteins and minimizing proteotoxicity. We demonstrated that M.tb genes were efficiently and specifically knocked-in/out by this system, which was confirmed by whole-genome sequencing. This system was further employed for single and simultaneous multiple-gene RNA interference. Moreover, we successfully applied this system for genome-wide CRISPR interference screening to identify the in-vitro and intracellular growth-regulating genes. This system can be extensively used to explore the functional genomics of M.tb and facilitate the development of new anti-Mycobacterial drugs and vaccines.SummaryTuberculosis caused by Mycobacterium tuberculosis (M.tb) is the current leading infectious disease affecting more than ten million people annually. To dissect the functional genomics and understand its virulence, persistence, and antibiotics resistance, a powerful genome editing tool and high-throughput screening methods are desperately wanted. Our study developed an efficient and a robust tool for genome editing and RNA interference in M.tb using its endogenous CRISPR cas10 system. Moreover, the system has been successfully applied for genome-wide CRISPR interference screening. This tool could be employed to explore the functional genomics of M.tb and facilitate the development of anti-M.tb drugs and vaccines.


2017 ◽  
Vol 36 (4) ◽  
pp. 291-309 ◽  
Author(s):  
Hui Zhang ◽  
Jinshan Zhang ◽  
Zhaobo Lang ◽  
José Ramón Botella ◽  
Jian-Kang Zhu

Sign in / Sign up

Export Citation Format

Share Document