transient transformation
Recently Published Documents


TOTAL DOCUMENTS

125
(FIVE YEARS 39)

H-INDEX

21
(FIVE YEARS 3)

2022 ◽  
Author(s):  
Tong Jia ◽  
Bizhen Cheng ◽  
Huahao Feng ◽  
Muhammad Jawad Hassan ◽  
Muhammad Zafar Iqbal ◽  
...  

Abstract White clover (Trifolium repens) is one of the most widely cultivated livestock forage legumes co-cultivated worldwide with pasture grass in a mixed-sward setting, however, its persistence and aesthetic quality are severely affected by abiotic stresses. In this study, regeneration of white clover plants was conducted through a callus system for 4-5 months with a regeneration frequency of 36-41%. Inoculating 4-day-old cotyledons into MS media fortified with 0.4 mg·L-1 6-BA and 2 mg·L-1 2,4-D significantly increased the callus formation rate. Roots and cotyledons were better induced, followed by hypocotyls, leaves, and petioles. The development of differentiated structures performed effectively on MS supplemented with 1 mg·L-1 6-BA and 0.1 mg·L-1 NAA. Further, we determined factors affecting the Agrobacterium tumefaciens-mediated transient transformation for root-derived callus and 4-day-old cotyledons. The parameters that facilitated transient transformation were: Agrobacterium suspension density of 0.5 (OD600), 20 mg·L-1 AS, and 4-days co-cultivation duration. Subsequently, we developed two transformation protocols: transformation after callus formation in root segments (Protocol A) and transformation before callus initiation in 4-day-old cotyledons (Protocol B). The transformation frequencies varied from 1.92% to 3.17% in Protocol A and from 2.76% to 3.47% in Protocol B. We offer the possibility to regenerate multiple transgenic white clover from a single genetic background. In addition to assistance in identification of functional genes associated with yield, resistance and aesthetic quality, our research will also contribute to successful genetic manipulation and genome editing in white clover.


Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2271
Author(s):  
Juan H. Gonzalez ◽  
Joseph S. Taylor ◽  
Kelsey M. Reed ◽  
R. Clay Wright ◽  
Bastiaan O. R. Bargmann

Background: Regeneration of fertile plants from tissue culture is a critical bottleneck in the application of new plant breeding technologies. Ectopic overexpression of morphogenic factors is a promising workaround for this hurdle. Methods: Conditional overexpression of WUS and ARF5Δ was used to study the effect of timing the overexpression of these morphogenic factors during shoot regeneration from root explants in Arabidopsis. In addition, their effect on auxin-signaling activation was examined by visualization and cytometric quantification of the DR5:GFP auxin-signaling reporter in roots and protoplasts, respectively. Results: The induced expression of both WUS and ARF5Δ led to an activation of auxin signaling in roots. Activation of auxin signaling by WUS and ARF5Δ was further quantified by transient transformation of protoplasts. Ectopic overexpression of both WUS and ARF5Δ enhanced regeneration efficiency, but only during the shoot-induction stage of regeneration and not during the callus-induction stage. Conclusions: The overexpression of WUS and ARF5Δ both lead to activation of auxin signaling. Expression during the shoot-induction stage is critical for the enhancement of shoot regeneration by WUS and ARF5Δ.


Plant Methods ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Yongpeng Li ◽  
Tiantian Chen ◽  
Wei Wang ◽  
Hang Liu ◽  
Xin Yan ◽  
...  

Abstract Background The Agrobacterium-mediated transient transformation, which proved effective in diverse plant species, has been widely applied for high-throughput gene function studies due to its simplicity, rapidity, and high efficiency. Despite the efforts have made on Artemisia annua transient expression, achieving high-throughput gene functional characterization basing on a fast and easy-manipulated transient transformation system in A. annua remains challenging. Results The first pair of true leaves of A. annua is an ideal candidate for Agrobacterium injection. EHA105 was the optimal strain that can be used for the development of the transient expression system. The supplementation of Triton X-100 at a concentration of 0.005% greatly improved the transient expression frequency. According to the histochemical β-Glucuronidase (GUS) staining assay, high transient expression level of the reporter gene (GUS) maintained at least a week. Dual-luciferase (Dual-LUC) transient assays showed that the activity of cauliflower mosaic virus 35S (CaMV35S) promoter and its derivates varied between A. annua and tobacco. In A. annua, the CaMV35S promoter had comparable activity with double CaMV35S promoter, while in tobacco, CaMV35S exhibited approximately 50% activity of double CaMV35S promoter. Otherwise, despite the CaMV35S promoter and double CaMV35S promoter from GoldenBraid Kit 2.0 displayed high activity strength in tobacco, they demonstrated a very low activity in transiently expressed A. annua. The activity of UBQ10 promoter and endogenous UBQb promoter was investigated as well. Additionally, using our transient expression system, the transactivation of AaGSW1 and AaORA on AaCYP71AV1 promoter was confirmed. Dual-LUC assays demonstrated that AaHD8 activated the expression of two glandular secreting trichomes-specific lipid transfer protein genes AaLTP1 and AaLTP2, indicating that AaLTP1 and AaLTP2 might serve as downstream components of AaHD8-involved glandular trichome initiation and cuticle formation, as well as artemisinin secretion in A. annua. Conclusions A simple, rapid, good-reproducibility, high-efficiency and low-cost transient transformation system in A. annua was developed. Our method offered a new way for gene functional characterization studies such as gene subcellular localization, promoter activity and transcription activation assays in A. annua, avoiding the aberrant phenotypes resulting from gene expression in a heterologous system.


2021 ◽  
Vol 3 ◽  
Author(s):  
Kelsey M. Reed ◽  
Bastiaan O. R. Bargmann

The development of gene-editing technology holds tremendous potential for accelerating crop trait improvement to help us address the need to feed a growing global population. However, the delivery and access of gene-editing tools to the host genome and subsequent recovery of successfully edited plants form significant bottlenecks in the application of new plant breeding technologies. Moreover, the methods most suited to achieve a desired outcome vary substantially, depending on species' genotype and the targeted genetic changes. Hence, it is of importance to develop and improve multiple strategies for delivery and regeneration in order to be able to approach each application from various angles. The use of transient transformation and regeneration of plant protoplasts is one such strategy that carries unique advantages and challenges. Here, we will discuss the use of protoplast regeneration in the application of new plant breeding technologies and review pertinent literature on successful protoplast regeneration.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Jinli Gong ◽  
Zhen Tian ◽  
Xiaolu Qu ◽  
Qiunan Meng ◽  
Yajie Guan ◽  
...  

AbstractAlthough multiple microscopic techniques have been applied to horticultural research, few studies of individual organelles in living fruit cells have been reported to date. In this paper, we established an efficient system for the transient transformation of citrus fruits using an Agrobacterium-mediated method. Kumquat (Fortunella crassifolia Swingle) was used; it exhibits higher transformation efficiency than all citrus fruits that have been tested and a prolonged-expression window. Fruits were transformed with fluorescent reporters, and confocal microscopy and live-cell imaging were used to study their localization and dynamics. Moreover, various pH sensors targeting different subcellular compartments were expressed, and the local pH environments in cells from different plant tissues were compared. The results indicated that vacuoles are most likely the main organelles that contribute to the low pH of citrus fruits. In summary, our method is effective for studying various membrane trafficking events, protein localization, and cell physiology in fruit and can provide new insight into fruit biology research.


Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1338
Author(s):  
Cristian Pérez-Caselles ◽  
Lydia Faize ◽  
Lorenzo Burgos ◽  
Nuria Alburquerque

The improvement of previously described protocols for the regeneration of shoots from ‘Canino’ mature seed hypocotyl slices has been accomplished. The effects of different factors such as the part of the hypocotyl used, vacuum-infiltration, 2,4-Dichlorophenoxyacetic acid pulse, vacuum-infiltration and sonication on regeneration and transient transformation were analyzed. When the three slices obtained from the hypocotyls were evaluated separately on regeneration medium, the highest percentages of regenerating explants were achieved in the part close to the epicotyl and in the central part. On the other hand, sonication of the explants for 30 s followed by vacuum-infiltration during Agrobacterium infection for 20 min allowed for an increase in the transformation events. The application of these modifications to the procedure increased the regeneration efficiencies, and transient transformation events and may reduce the frequency of failed experiments. An efficient regeneration/transformation protocol could facilitate its use as a biotechnological technique for apricot breeding.


2021 ◽  
Author(s):  
Hidekazu Iwakawa ◽  
Katharina Melkonian ◽  
Titus Schluter ◽  
Ryuichi Nishihama ◽  
Hiroyasu Motose ◽  
...  

Agrobacterium-mediated transient gene expression is a rapid and useful approach for characterizing functions of gene products in planta. However, the practicability of the method in the model liverwort Marchantia polymorpha has not yet been thoroughly described. Here we report a simple and robust method for Agrobacterium-mediated transient transformation of Marchantia thalli and its applicability. When thalli of M. polymorpha were co-cultured with Agrobacterium tumefaciens carrying GUS genes, GUS staining was observed primarily in assimilatory filaments and rhizoids. GUS activity was detected 2 days after infection and saturated 3 days after infection. We were able to transiently co-express fluorescently tagged proteins with proper localizations. Furthermore, we demonstrate that our method can be used as a novel pathosystem to study liverwort-bacteria interactions. We also provide evidence that air chambers support bacterial colonization.


2021 ◽  
Vol 282 ◽  
pp. 110028
Author(s):  
Xuejin Chen ◽  
Songtao He ◽  
Lina Jiang ◽  
Xinzheng Li ◽  
Weili Guo ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Lin Zheng ◽  
Jixiu Yang ◽  
Yajuan Chen ◽  
Liping Ding ◽  
Jianhua Wei ◽  
...  

Abstract Background Forest trees have important economic and ecological value. As a model tree, poplar has played a significant role in elucidating the molecular mechanisms underlying tree biology. However, a lack of mutant libraries and time-consuming stable genetic transformation processes severely limit progress into the functional characterization of poplar genes. A convenient and fast transient transformation method is therefore needed to enhance progress on functional genomics in poplar. Methods A total of 11 poplar clones were screened for amenability to syringe infiltration. Syringe infiltration was performed on the lower side of the leaves of young soil-grown plants. Transient expression was evaluated by visualizing the reporters β-glucuronidase (GUS) and green fluorescent protein (GFP). The experimental parameters of the syringe agroinfiltration were optimized based on the expression levels of the reporter luciferase (LUC). Stably transformed plants were regenerated from transiently transformed leaf explants through callus-induced organogenesis. The functions of Populus genes in secondary cell wall-thickening were characterized by visualizing lignin deposition therein after staining with basic fuchsin. Results We greatly improved the transient transformation efficiency of syringe Agrobacterium infiltration in poplar through screening for a suitable poplar clone from a variety of clones and optimizing the syringe infiltration procedure. The selected poplar clone, Populus davidiana × P. bolleana, is amenable to Agrobacterium syringe infiltration, as indicated by the easy diffusion of the bacterial suspension inside the leaf tissues. Using this technique, we localized a variety of poplar proteins in specific intracellular organelles and illustrated the protein–protein and protein–DNA interactions. The transiently transformed leaves could be used to generate stably transformed plants with high efficiency through callus induction and differentiation processes. Furthermore, transdifferentiation of the protoxylem-like vessel element and ectopic secondary wall thickening were induced in the agroinfiltrated leaves via the transient overexpression of genes associated with secondary wall formation. Conclusions The application of P. davidiana × P. bolleana in Agrobacterium syringe infiltration provides a foundation for the rapid and high-throughput functional characterization of Populus genes in intact poplar plants, including those involved in wood formation, and provides an effective alternative to Populus stable genetic transformation.


Sign in / Sign up

Export Citation Format

Share Document