scholarly journals Human platelet lysate as a potential clinical-translatable supplement to support the neurotrophic properties of human adipose-derived stem cells

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Silvia Palombella ◽  
Martino Guiotto ◽  
Gillian C. Higgins ◽  
Laurent L. Applegate ◽  
Wassim Raffoul ◽  
...  

Abstract Background The autologous nerve graft, despite its donor site morbidity and unpredictable functional recovery, continues to be the gold standard in peripheral nerve repair. Rodent research studies have shown promising results with cell transplantation of human adipose-derived stem cells (hADSC) in a bioengineered conduit, as an alternative strategy for nerve regeneration. To achieve meaningful clinical translation, cell therapy must comply with biosafety. Cell extraction and expansion methods that use animal-derived products, including enzymatic adipose tissue dissociation and the use of fetal bovine serum (FBS) as a culture medium supplement, have the potential for transmission of zoonotic infectious and immunogenicity. Human-platelet-lysate (hPL) serum has been used in recent years in human cell expansion, showing reliability in clinical applications. Methods We investigated whether hADSC can be routinely isolated and cultured in a completely xenogeneic-free way (using hPL culture medium supplement and avoiding collagenase digestion) without altering their physiology and stem properties. Outcomes in terms of stem marker expression (CD105, CD90, CD73) and the osteocyte/adipocyte differentiation capacity were compared with classical collagenase digestion and FBS-supplemented hADSC expansion. Results We found no significant differences between the two examined extraction and culture protocols in terms of cluster differentiation (CD) marker expression and stem cell plasticity, while hADSC in hPL showed a significantly higher proliferation rate when compared with the usual FBS-added medium. Considering the important key growth factors (particularly brain-derived growth factor (BDNF)) present in hPL, we investigated a possible neurogenic commitment of hADSC when cultured with hPL. Interestingly, hADSC cultured in hPL showed a statistically higher secretion of neurotrophic factors BDNF, glial cell-derived growth factor (GDNF), and nerve-derived growth factor (NFG) than FBS-cultured cells. When cocultured in the presence of primary neurons, hADSC which had been grown under hPL supplementation, showed significantly enhanced neurotrophic properties. Conclusions The hPL-supplement medium could improve cell proliferation and neurotropism while maintaining stable cell properties, showing effectiveness in clinical translation and significant potential in peripheral nerve research.

2019 ◽  
Vol 7 (45) ◽  
pp. 7110-7119 ◽  
Author(s):  
Yan Gao ◽  
Nien-Ju Ku ◽  
Tzu-Cheng Sung ◽  
Akon Higuchi ◽  
Chi-Sheng Hung ◽  
...  

Synchronized effects of cell culture materials and cell culture medium on osteoblast (left) and chondrocyte (right) differentiation were observed.


Author(s):  
Martino Guiotto ◽  
Wassim Raffoul ◽  
Andrew M. Hart ◽  
Mathis O. Riehle ◽  
Pietro G. di Summa

BackgroundDespite the advancements in microsurgical techniques and noteworthy research in the last decade, peripheral nerve lesions have still weak functional outcomes in current clinical practice. However, cell transplantation of human adipose-derived stem cells (hADSC) in a bioengineered conduit has shown promising results in animal studies. Human platelet lysate (hPL) has been adopted to avoid fetal bovine serum (FBS) in consideration of the biosafety concerns inherent with the use of animal-derived products in tissue processing and cell culture steps for translational purposes. In this work, we investigate how the interplay between hPL-expanded hADSC (hADSChPL) and extracellular matrix (ECM) proteins influences key elements of nerve regeneration.MethodshADSC were seeded on different ECM coatings (laminin, LN; fibronectin, FN) in hPL (or FBS)-supplemented medium and co-cultured with primary dorsal root ganglion (DRG) to establish the intrinsic effects of cell–ECM contact on neural outgrowth. Co-cultures were performed “direct,” where neural cells were seeded in contact with hADSC expanded on ECM-coated substrates (contact effect), or “indirect,” where DRG was treated with their conditioned medium (secretome effect). Brain-derived nerve factor (BDNF) levels were quantified. Tissue culture plastic (TCPS) was used as the control substrate in all the experiments.ResultshPL as supplement alone did not promote higher neurite elongation than FBS when combined with DRG on ECM substrates. However, in the presence of hADSC, hPL could dramatically enhance the stem cell effect with increased DRG neurite outgrowth when compared with FBS conditions, regardless of the ECM coating (in both indirect and direct co-cultures). The role of ECM substrates in influencing neurite outgrowth was less evident in the FBS conditions, while it was significantly amplified in the presence of hPL, showing better neural elongation in LN conditions when compared with FN and TCPS. Concerning hADSC growth factor secretion, ELISA showed significantly higher concentrations of BDNF when cells were expanded in hPL compared with FBS-added medium, without significant differences between cells cultured on the different ECM substrates.ConclusionThe data suggest how hADSC grown on LN and supplemented with hPL could be active and prone to support neuron–matrix interactions. hPL enhanced hADSC effects by increasing both proliferation and neurotrophic properties, including BDNF release.


Cells ◽  
2019 ◽  
Vol 8 (10) ◽  
pp. 1218 ◽  
Author(s):  
Kakudo ◽  
Morimoto ◽  
Ma ◽  
Kusumoto

Background: Recently, human adipose-derived stem cells (hASCs) were discovered in the human subcutaneous adipose tissue. PLTMax Human Platelet Lysate (PLTMax), a supplement refined from human platelets, has been reported to have proliferative effects on bone marrow mesenchymal stem cells. The proliferative effects of PLTMax on ASCs were investigated in this study. Methods: The ASCs in DMEM (serum-free), DMEM+PLTMax (1%, 2%, 5%, and 10%), and DMEM+FBS (10%) were cultivated for two, five, and seven days. The cell growth rate was examined, BrdU incorporation, and the cell cycle and Ki-67 immunostaining were performed. The cell growth rate was investigated when each inhibitor (PD98059, SP600125, SB203580, and LY294002) was added and phosphorylation of ERK1/2, JNK, p38, and Akt were examined by western blotting. The cell surface marker of hASCs was also analyzed. Results: The cells in the PLTMax (5%) group showed significantly more proliferation compared to the cells in control (serum-free) and FBS (10%) groups, and a significant increase in the number of cells in the S phase and G2/M phase. The number of Ki-67 positive cells increased significantly in the DMEM+ PLTMax (5%) and the FBS (10%) groups. The addition of inhibitors PD98059, SP600125, SB203580, and LY294002 decreased the proliferative effects of PLTMax on ASCs. Phosphorylation of ERK1/2, JNK, p38, and Akt was observed in both the PLTMax (5%) and the FBS (10%) groups. Conclusions: For human adipose stem cells, 5% PLTMax was the optimum concentration, which showed a significantly higher proliferative effect than 10% FBS. PLTMax is a useful medium additive, which can substitute FBS. The proliferative effects of PLTMax are suggested to function via multiple signaling pathways, similar to FBS.


Sign in / Sign up

Export Citation Format

Share Document