scholarly journals The combination of trehalose and glycerol: an effective and non-toxic recipe for cryopreservation of human adipose-derived stem cells

2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Tian-Yu Zhang ◽  
Poh-Ching Tan ◽  
Yun Xie ◽  
Xiao-Jie Zhang ◽  
Pei-Qi Zhang ◽  
...  

Abstract Background Adipose-derived stem cells (ADSCs) promote tissue regeneration and repair. Cryoprotective agents (CPAs) protect cells from cryodamage during cryopreservation. Safe and efficient cryopreservation of ADSCs is critical for cell-based therapy in clinical applications. However, most CPAs are used at toxic concentrations, limiting their clinical application. Objective The aim of this study is to develop a non-toxic xeno-free novel CPA aiming at achieving high-efficiency and low-risk ADSC cryopreservation. Methods We explored different concentrations of trehalose (0.3 M, 0.6 M, 1.0 M, and 1.25 M) and glycerol (10%, 20%, and 30% v/v) for optimization and evaluated and compared the outcomes of ADSCs cryopreservation between a combination of trehalose and glycerol and the commonly used CPA DMSO (10%) + FBS (90%). All samples were slowly frozen and stored in liquid nitrogen for 30 days. The effectiveness was evaluated by the viability, proliferation, migration, and multi-potential differentiation of the ADSCs after thawing. Results Compared with the groups treated with individual reagents, the 1.0 M trehalose (Tre) + 20% glycerol (Gly) group showed significantly higher efficiency in preserving ADSC activities after thawing, with better outcomes in both cell viability and proliferation capacity. Compared with the 10% DMSO + 90% FBS treatment, the ADSCs preserved in 1.0 M Tre + 20% Gly showed similar cell viability, surface markers, and multi-potential differentiation but a significantly higher migration capability. The results indicated that cell function preservation can be improved by 1.0 M Tre + 20% Gly. Conclusions The 1.0 M Tre + 20% Gly treatment preserved ADSCs with a higher migration capability than 10% DMSO + 90% FBS and with viability higher than that with trehalose or glycerol alone but similar to that with 10% DMSO + 90% FBS and fresh cells. Moreover, the new CPA achieves stemness and multi-potential differentiation similar to those in fresh cells. Our results demonstrate that 1.0 M Tre + 20% Gly can more efficiently cryopreserve ADSCs and is a non-toxic CPA that may be suitable for clinical applications.

2020 ◽  
Author(s):  
Tian-Yu Zhang ◽  
Poh-Ching Tan ◽  
Yun Xie ◽  
Xiao-Jie Zhang ◽  
Pei-Qi Zhang ◽  
...  

Abstract Background: Adipose-derived stem cells (ADSCs) promote tissue regeneration and repair. Cryoprotective agents (CPAs) protect cells from cryodamage during cryopreservation. Safe and efficient cryopreservation of ADSCs is critical for cell-based therapy in clinical applications. However, most CPAs are used at toxic concentrations, limiting their clinical application. Objective: The aim of this study is to develop a non-toxic xeno-free novel CPA aiming at achieving high-efficiency and low-risk ADSC cryopreservation.Methods: We explored different concentrations of trehalose (0.3 M, 0.6 M, 1.0 M, and 1.25 M) and glycerol (10%, 20%, and 30% v/v) for optimization and evaluated and compared the outcomes of ADSCs cryopreservation between a combination of trehalose and glycerol and the commonly used CPA DMSO (10%) + FBS (90%). All samples were slowly frozen and stored in liquid nitrogen for 30 days. The effectiveness was evaluated by the viability, proliferation, migration and multi-potential differentiation of the ADSCs after thawing. Results: Compared with the groups treated with individual reagents, the 1.0 M Tre + 20% Gly group showed significantly higher efficiency in preserving ADSC activities after thawing, with better outcomes in both cell viability and proliferation capacity. Compared with the 10% DMSO + 90% FBS treatment, the ADSCs preserved in 1.0 M Tre + 20% Gly showed similar cell viability, surface markers and multi-potential differentiation but a significantly higher migration capability. The results indicated that cell function preservation can be improved by 1.0 M Tre + 20% Gly. Conclusions: The 1.0 M Tre + 20% Gly treatment preserved ADSCs with a higher migration capability than 10% DMSO + 90% FBS and with viability higher than that with trehalose or glycerol alone but similar to that with 10% DMSO + 90% FBS and fresh cells. Moreover, the new CPA achieves stemness and multi-potential differentiation similar to those in fresh cells. Our results demonstrate that 1.0 M Tre + 20% Gly can more efficiently cryopreserve ADSCs and is a non-toxic CPA that may be suitable for clinical applications.


2020 ◽  
Author(s):  
Tian-Yu Zhang ◽  
Poh-Ching Tan ◽  
Yun Xie ◽  
Xiao-Jie Zhang ◽  
Pei-Qi Zhang ◽  
...  

Abstract Background: Adipose-derived stem cells (ADSCs) promote tissue regeneration and repair. Cryoprotective agents (CPA) protect cells from cryodamage in the process of cryopreservation. Safe and efficient cryopreservation of ADSCs is critical in the clinical application of cell-based therapy. However, most CPAs contain toxic concentrations limiting the possibility of their clinical application. Objective: The aim of this study is to develop a non-toxic xeno-free CPA for ADSCs to achieve high-efficiency and low-risk cryopreservation. Methods: We explored the most efficient concentrations in different concentrations of trehalose (0.3M, 0.6M, 1.0M, and 1.25M) and glycerol (10%, 20%, 30% v/v); then evaluated the outcome of the combination of trehalose and glycerol in ADSC cryopreservation, compared to the commonly used CPA, DMSO (10%) + FBS (90%). All samples were slowly freezed and stored in liquid nitrox for 30 days. The effectiveness was evaluated by the cell viability, proliferation, migration and multi-potential differentiation of ADSCs after thawing. Results: Compared to the CPAs with single reagent, 1.0M Tre + 20%Gly group showed significantly higher efficiency in preserving ADSCs activities after thawing, with better outcome in both cell viability and proliferating capacity. Compared to 10%DMSO+90%FBS, ADSCs preserved in 1.0M Tre + 20%Gly group showed similar cell viability, surface markers and multi-potential differentiation but significantly higher migration capability, indicating that better cell function preservation can be achieved by 1.0M Tre + 20%Gly. Conclusions: 1.0M Tre + 20%Gly can preserve ADSCs with high migration capability and cell viability compared to 10%DMSO+90%FBS and maintain similar stemness and multi-potential differentiation as fresh cells. Our results demonstrate that 1.0M Tre + 20%Gly can achieve highly efficient cryopreservation of ADSCs and is suitable for clinical applications.


2013 ◽  
Vol 114 (5) ◽  
pp. 647-655 ◽  
Author(s):  
Chung-Hwan Chen ◽  
Yi-Shan Lin ◽  
Yin-Chih Fu ◽  
Chih-Kuang Wang ◽  
Shun-Cheng Wu ◽  
...  

We tested the hypothesis that electromagnetic field (EMF) stimulation enhances chondrogenesis in human adipose-derived stem cells (ADSCs) in a chondrogenic microenvironment. A two-dimensional hyaluronan (HA)-coated well (2D-HA) and a three-dimensional pellet culture system (3D-pellet) were used as chondrogenic microenvironments. The ADSCs were cultured in 2D-HA or 3D-pellet, and then treated with clinical-use pulse electromagnetic field (PEMF) or the innovative single-pulse electromagnetic field (SPEMF) stimulation. The cytotoxicity, cell viability, and chondrogenic and osteogenic differentiations were analyzed after PEMF or SPEMF treatment. The modules of PEMF and SPEMF stimulations used in this study did not cause cytotoxicity or alter cell viability in ADSCs. Both PEMF and SPEMF enhanced the chondrogenic gene expression (SOX-9, collagen type II, and aggrecan) of ADSCs cultured in 2D-HA and 3D-pellet. The expressions of bone matrix genes (osteocalcin and collagen type I) of ADSCs were not changed after SPEMF treatment in 2D-HA and 3D-pellet; however, they were enhanced by PEMF treatment. Both PEMF and SPEMF increased the cartilaginous matrix (sulfated glycosaminoglycan) deposition of ADSCs. However, PEMF treatment also increased mineralization of ADSCs, but SPEMF treatment did not. Both PEMF and SPEMF enhanced chondrogenic differentiation of ADSCs cultured in a chondrogenic microenvironment. SPEMF treatment enhanced ADSC chondrogenesis, but not osteogenesis, when the cells were cultured in a chondrogenic microenvironment. However, PEMF enhanced both osteogenesis and chondrogenesis under the same conditions. Thus the combination of a chondrogenic microenvironment with SPEMF stimulation can promote chondrogenic differentiation of ADSCs and may be applicable to articular cartilage tissue engineering.


2012 ◽  
Vol 21 (8) ◽  
pp. 1333-1343 ◽  
Author(s):  
Olga DelaRosa ◽  
Beatriz Sánchez-Correa ◽  
Sara Morgado ◽  
Cristina Ramírez ◽  
Borja del Río ◽  
...  

2008 ◽  
Vol 60 (5) ◽  
pp. 538-544 ◽  
Author(s):  
Bret M. Schipper ◽  
Kacey G. Marra ◽  
Wei Zhang ◽  
Albert D. Donnenberg ◽  
J Peter Rubin

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Haoyu Wu ◽  
Zhi Peng ◽  
Ying Xu ◽  
Zixuan Sheng ◽  
Yanshan Liu ◽  
...  

Abstract Background Osteoarthritis (OA), a prevalent degenerative disease characterized by degradation of extracellular matrix (ECM), still lacks effective disease-modifying therapy. Mesenchymal stem cells (MSCs) transplantation has been regarded as the most promising approach for OA treatment while engrafting cells alone might not be adequate for effective regeneration. Genetic modification has been used to optimize MSC-based therapy; however, there are still significant limitations that prevent the clinical translation of this therapy including low efficacy and safety concerns. Recently, chemically modified mRNA (modRNA) represents a promising alternative for the gene-enhanced MSC therapy. In this regard, we hypothesized that adipose derived stem cells (ADSCs) engineered with modRNA encoding insulin-like growth factor 1 (IGF-1) were superior to native ADSCs on ameliorating OA development. Methods Mouse ADSCs were acquired from adipose tissue and transfected with modRNAs. First, the kinetics and efficacy of modRNA-mediated gene transfer in mouse ADSCs were analyzed in vitro. Next, we applied an indirect co-culture system to analyze the pro-anabolic potential of IGF-1 modRNA engineered ADSCs (named as IGF-1-ADSCs) on chondrocytes. Finally, we evaluated the cell retention and chondroprotective effect of IGF-1-ADSCs in vivo using fluorescent labeling, histology and immunohistochemistry. Results modRNA transfected mouse ADSCs with high efficiency (85 ± 5%) and the IGF-1 modRNA-transfected ADSCs facilitated burst-like production of bio-functional IGF-1 protein. In vitro, IGF-1-ADSCs induced increased anabolic markers expression of chondrocytes in inflammation environment compared to untreated ADSCs. In a murine OA model, histological and immunohistochemical analysis of knee joints harvested at 4 weeks and 8 weeks after OA induction suggested IGF-1-ADSCs had superior therapeutic effect over native ADSCs demonstrated by lower histological OARSI score and decreased loss of cartilage ECM. Conclusions These findings collectively supported the therapeutic potential of IGF-1-ADSCs for clinical OA management and cartilage repair.


2020 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
Yaping Qu ◽  
Jie Luan ◽  
Dali Mu ◽  
Qian Wang ◽  
Zifei Li ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document