Electromagnetic fields enhance chondrogenesis of human adipose-derived stem cells in a chondrogenic microenvironment in vitro

2013 ◽  
Vol 114 (5) ◽  
pp. 647-655 ◽  
Author(s):  
Chung-Hwan Chen ◽  
Yi-Shan Lin ◽  
Yin-Chih Fu ◽  
Chih-Kuang Wang ◽  
Shun-Cheng Wu ◽  
...  

We tested the hypothesis that electromagnetic field (EMF) stimulation enhances chondrogenesis in human adipose-derived stem cells (ADSCs) in a chondrogenic microenvironment. A two-dimensional hyaluronan (HA)-coated well (2D-HA) and a three-dimensional pellet culture system (3D-pellet) were used as chondrogenic microenvironments. The ADSCs were cultured in 2D-HA or 3D-pellet, and then treated with clinical-use pulse electromagnetic field (PEMF) or the innovative single-pulse electromagnetic field (SPEMF) stimulation. The cytotoxicity, cell viability, and chondrogenic and osteogenic differentiations were analyzed after PEMF or SPEMF treatment. The modules of PEMF and SPEMF stimulations used in this study did not cause cytotoxicity or alter cell viability in ADSCs. Both PEMF and SPEMF enhanced the chondrogenic gene expression (SOX-9, collagen type II, and aggrecan) of ADSCs cultured in 2D-HA and 3D-pellet. The expressions of bone matrix genes (osteocalcin and collagen type I) of ADSCs were not changed after SPEMF treatment in 2D-HA and 3D-pellet; however, they were enhanced by PEMF treatment. Both PEMF and SPEMF increased the cartilaginous matrix (sulfated glycosaminoglycan) deposition of ADSCs. However, PEMF treatment also increased mineralization of ADSCs, but SPEMF treatment did not. Both PEMF and SPEMF enhanced chondrogenic differentiation of ADSCs cultured in a chondrogenic microenvironment. SPEMF treatment enhanced ADSC chondrogenesis, but not osteogenesis, when the cells were cultured in a chondrogenic microenvironment. However, PEMF enhanced both osteogenesis and chondrogenesis under the same conditions. Thus the combination of a chondrogenic microenvironment with SPEMF stimulation can promote chondrogenic differentiation of ADSCs and may be applicable to articular cartilage tissue engineering.

2007 ◽  
Vol 83A (3) ◽  
pp. 626-635 ◽  
Author(s):  
Ulrich Nöth ◽  
Lars Rackwitz ◽  
Andrea Heymer ◽  
Meike Weber ◽  
Bernd Baumann ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-17 ◽  
Author(s):  
Sorina Dinescu ◽  
Bianca Galateanu ◽  
Eugen Radu ◽  
Anca Hermenean ◽  
Adriana Lungu ◽  
...  

Cartilage has limited regeneration potential. Thus, there is an imperative need to develop new strategies for cartilage tissue engineering (CTE) amenable for clinical use. Recent CTE approaches rely on optimal cell-scaffold interactions, which require a great deal of optimization. In this study we attempt to build a novel gelatin- (G-) alginate- (A-) polyacrylamide (PAA) 3D interpenetrating network (IPN) with superior performance in promoting chondrogenesis from human adipose-derived stem cells (hADSCs). We show that our G-A-PAA scaffold is capable of supporting hADSCs proliferation and survival, with no apparent cytotoxic effect. Moreover, we find that after exposure to prochondrogenic conditions a key transcription factor known to induce chondrogenesis, namely, Sox9, is highly expressed in our hADSCs/G-A-PAA bioconstruct, along with cartilage specific markers such as collagen type II, CEP68, and COMP extracellular matrix (ECM) components. These data suggest that our G-A-PAA structural properties and formulation might enable hADSCs conversion towards functional chondrocytes. We conclude that our novel G-A-PAA biomatrix is a good candidate for prospectivein vivoCTE applications.


2015 ◽  
Author(s):  
Krzysztof Marycz ◽  
Daniel Lewandowski ◽  
Krzysztof A Tomaszewski ◽  
Brandon Michael Henry ◽  
Edward B Golec ◽  
...  

The aim of this study was to evaluate if low-frequency, low-magnitude vibrations (LFLM) could enhance chondrogenic differentiation potential of human adipose derived mesenchymal stem cells (hASCs) with simultaneous inhibition of their adipogenic properties for biomedical purposes. We developed a prototype device that induces low-magnitude (0.3 g) low-frequency vibrations with the following frequencies: 25, 35 and 45 Hz. Afterwards, we used human adipose derived mesenchymal stem cell (hASCS), to investigate their cellular response to the mechanical signals. We have also evaluated hASCs morphological and proliferative activity changes in response to each frequency. Induction of chondrogenesis in hASCs, under the influence of a 35 Hz signal leads to most effective and stable cartilaginous tissue formation through highest secretion of Bone Morphogenetic Protein 2 (BMP-2), and Collagen type II, with low concentration of Collagen type I. These results correlated well with appropriate gene expression level. Simultaneously, we observed significant up-regulation of α3, α4, β1 and β3 integrins in chondroblast progenitor cells treated with 35Hz vibrations, as well as Sox-9. Interestingly, we noticed that application of 35 Hz frequencies significantly inhibited adipogenesis of hASCs. The obtained results suggest that application of LFLM vibrations together with stem cell therapy might be a promising tool in cartilage regeneration.


2014 ◽  
Vol 26 (1) ◽  
pp. 211 ◽  
Author(s):  
R. A. C. Rabel ◽  
L. Osterbur ◽  
A. Maki ◽  
J. Lewis ◽  
M. B. W. Wheeler

There is a great need for bioengineered cartilage because of the lack of medical or surgical therapies to improve articular cartilage healing. We hypothesised that porcine adipose-derived stem cells (pASC) can be induced to undergo chondrogenic differentiation within hyaluronic acid (HA) hydrogels. The objective of this study was to develop UV-curable pASC-laden HA hydrogels aimed at application in cartilage tissue engineering. HA was treated with glycidyl methacrylate (GM) to allow chemical gelation of the polymer upon exposure to UV light. 2% HAGM hydrogel was obtained by mixing HAGM with chondrogenic medium consisting of TGFβ, ascorbic acid, ITS+ premix (insulin, transferrin, selenous acid; Cat. No. 354352, BD Biosciences, Franklin Lakes, NJ), sodium pyruvate, and dexamethasone. Passage three-pASC were resuspended in 2% HAGM hydrogel with 2 × 107 cells mL–1. Twelve-and-one-half (12.5)-μL droplets (micromasses) of this suspension containing 250 000 pASC were placed in 24-well culture plates and incubated for 2 h at 37°C and 5% CO2 to allow for cell attachment. Subsequently, the cell-laden hydrogels were cured with ~10 mW cm–2 365-nm UV light for 10 min, covered with 500 μL of chondrogenic medium, and cultured for up to 11 days at 37°C and 5% CO2. Additionally, pASC micromasses were cultured in chondrogenic medium without loading on 2% HAGM hydrogels as positive controls, and in non-chondrogenic DMEM as negative controls. Samples were collected at 4, 7, and 11 days in to culture for cryopreservation (for immunohistochemistry; IHC) and dimethylmethylene blue (DMMB) assay. IHC on day 11 of culture demonstrated the expression of cartilage specific proteins type-II collagen and aggrecan. On the basis of data from the DMMB assay, chondrogenic differentiation of pASC-laden micromasses in positive controls and 2% HAGM treatments were not different (P > 0.05). This indicates that ASC can produce cartilage equally well under both conditions, supporting the idea that HAGM may be used as a matrix for cartilage formation in vitro and possibly in vivo. In conclusion, using a micromass cell culture system, we demonstrated that 2% HAGM hydrogels support proliferation and chondrogenic differentiation of pASC. Further experiments testing different concentrations of HAGM and UV exposure levels, and larger sample numbers are warranted to further improve this procedure.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e1637 ◽  
Author(s):  
Krzysztof Marycz ◽  
Daniel Lewandowski ◽  
Krzysztof A. Tomaszewski ◽  
Brandon M. Henry ◽  
Edward B. Golec ◽  
...  

The aim of this study was to evaluate if low-frequency, low-magnitude vibrations (LFLM) could enhance chondrogenic differentiation potential of human adipose derived mesenchymal stem cells (hASCs) with simultaneous inhibition of their adipogenic properties for biomedical purposes. We developed a prototype device that induces low-magnitude (0.3 g) low-frequency vibrations with the following frequencies: 25, 35 and 45 Hz. Afterwards, we used human adipose derived mesenchymal stem cell (hASCS), to investigate their cellular response to the mechanical signals. We have also evaluated hASCs morphological and proliferative activity changes in response to each frequency. Induction of chondrogenesis in hASCs, under the influence of a 35 Hz signal leads to most effective and stable cartilaginous tissue formation through highest secretion of Bone Morphogenetic Protein 2 (BMP-2), and Collagen type II, with low concentration of Collagen type I. These results correlated well with appropriate gene expression level. Simultaneously, we observed significant up-regulation ofα3,α4,β1 andβ3 integrins in chondroblast progenitor cells treated with 35 Hz vibrations, as well as Sox-9. Interestingly, we noticed that application of 35 Hz frequencies significantly inhibited adipogenesis of hASCs. The obtained results suggest that application of LFLM vibrations together with stem cell therapy might be a promising tool in cartilage regeneration.


2012 ◽  
Vol 24 (03) ◽  
pp. 185-195 ◽  
Author(s):  
Ji Hye Hwang ◽  
On You Kim ◽  
A Ram Kim ◽  
Ji Yeon Bae ◽  
Su Mi Jeong ◽  
...  

Adult articular cartilage tissue has poor capability of self-repair. Therefore, a variety of tissue engineering approaches are motivated by the clinical need for articular repair. Alginate has been used as a biomaterial for cartilage regeneration. The alginate is a natural polymer that is extracted from seaweeds and purification. However, the main drawback is the immune rejection in vivo. To overcome this problem, we have developed the biocompability of alginate using modified Korbutt method. After alginate was purified, purified alginate microcapsules were used in cartilage regeneration. Chondrocytes were seeded in purified and nonpurified alginate microcapsules, and then cell viability, proliferation and phenotype were analyzed by 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide (MTT) assay. Reverse transcriptase-polymerase chain reaction (RT-PCR) was conducted to confirm mRNA expression on collagen type I and collagen type II for chondrocytes phenotype. Hematoxylin and eosin (H&E) and Safranin-O histological staining showed tissue growth at the interface during the first 10 days. In this study, chondrocytes in purified alginate microcapsules had higher cell viability, proliferation and more phenotype expression than those in nonpurified alginate microcapsules. The results suggest that the purified alginate microcapsule is useful for cartilage regeneration.


HPB ◽  
2016 ◽  
Vol 18 ◽  
pp. e289
Author(s):  
J.U. Chong ◽  
S.W. Lee ◽  
S.Y. Bak ◽  
S.O. Min ◽  
H. Suh ◽  
...  

2015 ◽  
Author(s):  
Krzysztof Marycz ◽  
Daniel Lewandowski ◽  
Krzysztof A Tomaszewski ◽  
Brandon Michael Henry ◽  
Edward B Golec ◽  
...  

The aim of this study was to evaluate if low-frequency, low-magnitude vibrations (LFLM) could enhance chondrogenic differentiation potential of human adipose derived mesenchymal stem cells (hASCs) with simultaneous inhibition of their adipogenic properties for biomedical purposes. We developed a prototype device that induces low-magnitude (0.3 g) low-frequency vibrations with the following frequencies: 25, 35 and 45 Hz. Afterwards, we used human adipose derived mesenchymal stem cell (hASCS), to investigate their cellular response to the mechanical signals. We have also evaluated hASCs morphological and proliferative activity changes in response to each frequency. Induction of chondrogenesis in hASCs, under the influence of a 35 Hz signal leads to most effective and stable cartilaginous tissue formation through highest secretion of Bone Morphogenetic Protein 2 (BMP-2), and Collagen type II, with low concentration of Collagen type I. These results correlated well with appropriate gene expression level. Simultaneously, we observed significant up-regulation of α3, α4, β1 and β3 integrins in chondroblast progenitor cells treated with 35Hz vibrations, as well as Sox-9. Interestingly, we noticed that application of 35 Hz frequencies significantly inhibited adipogenesis of hASCs. The obtained results suggest that application of LFLM vibrations together with stem cell therapy might be a promising tool in cartilage regeneration.


2015 ◽  
Vol 308 (9) ◽  
pp. C685-C696 ◽  
Author(s):  
Shun-Cheng Wu ◽  
Hsu-Feng Hsiao ◽  
Mei-Ling Ho ◽  
Yung-Li Hung ◽  
Je-Ken Chang ◽  
...  

Effectively directing the chondrogenesis of adipose-derived stem cells (ADSCs) to engineer articular cartilage represents an important challenge in ADSC-based articular cartilage tissue engineering. The discoidin domain receptor 1 (DDR1) has been shown to affect cartilage homeostasis; however, little is known about the roles of DDR1 in ADSC chondrogenesis. In this study, we used the three-dimensional culture pellet culture model system with chondrogenic induction to investigate the roles of DDR1 in the chondrogenic differentiation of human ADSCs (hADSCs). Real-time polymerase chain reaction and Western blot were used to detect the expression of DDRs and chondrogenic genes. Sulfated glycosaminoglycan (sGAG) was detected by Alcian blue and dimethylmethylene blue (DMMB) assays. Terminal deoxy-nucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining was used to assess cell death. During the chondrogenesis of hADSCs, the expression of DDR1 but not DDR2 was significantly elevated. The depletion of DDR1 expression in hADSCs using short hairpin RNA increased the expression of chondrogenic genes (SOX-9, collagen type II, and aggrecan) and cartilaginous matrix deposition (collagen type II and sGAG) and only slightly increased cell death (2–8%). DDR1 overexpression in hADSCs decreased the expression of chondrogenic genes (SOX-9, collagen type II, and aggrecan) and sGAG and enhanced hADSC survival. Moreover, DDR1-depleted hADSCs showed decreased expression of the terminal differentiation genes runt-related transcription factor 2 (Runx2) and matrix metalloproteinase 13 (MMP-13). These results suggest that DDR1 suppression may enhance ADSC chondrogenesis by enhancing the expression of chondrogenic genes and cartilaginous matrix deposition. We proposed that the suppression of DDR1 in ADSCs may be a candidate strategy of genetic modification to optimize ADSC-based articular cartilage tissue engineering.


Sign in / Sign up

Export Citation Format

Share Document