scholarly journals A novel biosurfactant producing Kocuria rosea ABR6 as potential strain in oil sludge recovery and lubrication

AMB Express ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Elham Akbari ◽  
Behnam Rasekh ◽  
Keivan Beheshti Maal ◽  
Farahnaz Karbasiun ◽  
Fatemeh Yazdian ◽  
...  

AbstractBiosurfactants are amphiphilic molecules composed of a hydrophilic and hydrophobic moiety and had the ability to penetrate into different phases to reduce the surface tension. This features caused to oil recovery, lubrication and facilities of crude oil in pipeline. In current research Biosurfactant-producing strain was isolated from the storage tanks of the Isfahan Oil Refining Company in Iran, and screened by oil expansion test, droplet collapse, and surface tension reduction measurement. Hydrocarbon recovery from crude oil sludge was measured under constant conditions. The effect of factoring biosource lubrication on crude oil in pipelines was investigated in vitro. Also, the optimization of biosurfactant production in different conditions was measured as a single factor and using Response Surface Method (RSM). The best biosurfactant-producing bacterium was identified as Kocuria rosea ABR6, and its sequence was registered in the gene bank with access number of MK100469. Chemical analysis proved that the produced biosurfactant was a lipopeptide. 7% of crude oil was recovered from petroleum sludge by biosurfactant obtained from Kocuria rosea ABR6. Also, the speed of crude oil transfer in pipelines was upgraded as it could be said that for a certain distance the transfer time reduced from 64 to 35 s. The highest biosurfactant production was measured at pH 9, aeration rate of 120 rpm and 96 h after incubation. The use of biosurfactants produced by Kocuria rosea ABR6 is recommended to remove oil sludge and lubricate oil in pipelines recommended in the oil industry.

2021 ◽  
Author(s):  
Elham Akbari ◽  
Keivan Beheshti Maal ◽  
Behnam Rasekh ◽  
Farahnaz Karbasiun ◽  
Zarrin dokh Emami ◽  
...  

Abstract At various stages of crude oil refining, solid and semi-solid wastes, known as petroleum sludge, are produced. Accumulation of oil waste in the refinery leads to reduced efficiency of oil refining and its release causes environmental pollution Biosurfactant-producing isolates were isolated from the oil reservoirs of the Isfahan refinery, Iran, and screened by oil expansion test, droplet collapse, and surface tension reduction measurement. Oil recovery from oil sludge was measured under constant conditions. The effect of factoring biosource lubrication on crude oil in pipelines was investigated in vitro. Also, the optimization of biosurfactant production in different conditions was measured as a single factor and Response surface Methodology. The best biosurfactant-producing bacterium was identified as Kocuria rosea ABR6, and its sequence was registered in the gene bank with access number of MK100469 registered. Chemical analysis proved that the biosurfactant produced was a lipopeptide. 7% of crude oil was recovered from petroleum sludge by biosurfactant obtained from Kocuria rosea ABR6.Also, the speed of crude oil transfer in pipelines was reduced from 64 seconds to 35 seconds. The highest biosurfactant production was measured at pH 9, aeration rate of 120 rpm and 96 hours after incubation. The use of biosurfactants produced by Kocuria rosea ABR6 is recommended to remove oil sludge and lubricate oil in pipelines recommended in the oil industry


Author(s):  
Siti Shilatul Najwa Sharuddin ◽  
Siti Rozaimah Sheikh Abdullah ◽  
Nur ‘Izzati Ismail ◽  
Ahmad Razi Othman ◽  
Hassimi Abu Hasan

2017 ◽  
Vol 76 (7) ◽  
pp. 1706-1714 ◽  
Author(s):  
Parvin Hasanizadeh ◽  
Hamid Moghimi ◽  
Javad Hamedi

Biosurfactants are biocompatible surface active agents which many microorganisms produce. This study investigated the production of biosurfactants by Mucor circinelloides. The effects of different factors on biosurfactant production, including carbon sources and concentrations, nitrogen sources, and iron (II) concentration, were studied and the optimum condition determined. Finally, the strain's ability to remove the crude oil and its relationship with biosurfactant production was evaluated. The results showed that M. circinelloides could reduce the surface tension of the culture medium to 26.6 mN/m and create a clear zone of 12.9 cm diameter in an oil-spreading test. The maximum surface tension reduction was recorded 3 days after incubation. The optimum condition for biosurfactant production was achieved in the presence of 8% waste frying oil as a carbon source, 2 g/L yeast extract as a nitrogen source, and 0.01 mM FeSO4. M. circinelloides could consume 8% waste frying oil in 5 days of incubation, and 87.6% crude oil in 12 days of incubation. A direct correlation was observed between oil degradation and surface tension reduction in the first 3 days of fungal growth. The results showed that the waste frying oil could be recommended as an inexpensive oily waste substance for biosurfactant production, and M. circinelloides could have the potential to treat waste frying oil. According to the results, the produced crude biosurfactant or fungal strain could be directly used for the mycoremediation of crude oil contamination in oil fields.


2019 ◽  
Vol 391 ◽  
pp. 106-113 ◽  
Author(s):  
B. Busahmin ◽  
B.B. Maini

For the most part, Surface tension is relying upon the force adjusted on a drop that is pending or hanging and inevitably is disengaged. Surfaces of fluids normally covered with what goes about as a tiny film. In spite of the fact that this evident film has little quality, it nevertheless acts like a thin membrane and resists being broken. This accepted to be the reason for the attractive forces between the atoms inside a given framework. All atoms are pulled in one to the next in extent to the result of their masses and conversely as the squares of the separation between them. Surface tension for both mineral and oil crude systems is investigated and the value was recorded. In addition, this value for mineral oil system showed higher value than foamy crude oil system, whereas foamy oil saturated methane crude oil system showed lower value than foamy oil saturated methane mineral oil. Surface tension in its general form is believed to have a significant feature in reservoir engineering calculations as well as in further studies related to improved oil production and in designing enhanced oil recovery plans. Moreover, CH4, C2H6 and CO2 oil systems investigated for the initial production, drawdown experiments. After the investigation, the behaviour is identical for almost one-day and two-days.


Author(s):  
NI’MATUZAHROH NI’MATUZAHROH ◽  
SILVIA KURNIA SARI ◽  
IRINE PUSPA NINGRUM ◽  
APRILLA DILA PUSFITA ◽  
LISA MARJAYANDARI ◽  
...  

Abstract. Ni’matuzahroh, Sari SK, Ningrum IP, Pusfita AD, Marjayandari L, Trikurniadewi N, Ibrahim SNMM, Fatimah, Nurhariyati T, Surtiningsih T, Yuliani H. 2019. The potential of indigenous bacteria from oil sludge for biosurfactant production using hydrolysate of agricultural waste. Biodiversitas 20: 1374-1379. Biosurfactants are amphipathic compounds which are useful in various fields of health, industry, and remediation. Biosurfactants are produced by bacteria that grow in hydrocarbon or sugar substrates. Hydrolysis product of agricultural waste can be used as a biosurfactant production medium. This research aims to obtain biosurfactant producing bacteria from Balongan oil sludge, Indonesia. The ability to grow and produce biosurfactant by indigenous bacteria was tested using a medium of Synthetic Mineral Water (SMW) added by 209.3 ppm of rice straw hydrolysis product (RSHP). The growth of bacteria was evaluated through Total Plate Count (TPC) and biosurfactant production was evaluated through measurement of emulsification activity and surface tension. Six indigenous bacteria were capable to produce biosurfactants in the RSHP. Emulsification activity was not detected, but surface tension reduction was founded. The best biosurfactant was indicated by surface tension value of 53.56 mN/m with TPC value of 20.07 CFU/mL at the 5th day of incubation by BP (1) 5. The indigenous bacteria were identified as Propionibacterium BP (1) 1, Propionibacterium BP (1) 3, Bacillus BP (1) 4, Corynebacterium BP (1) 5, Corynebacterium BP (1) 8, and Rothia BP (1) 6. Utilization of sugar as hydrolysis product of agricultural waste is an innovation of raw materials for biosurfactant production.


2021 ◽  
Vol 9 (2) ◽  
pp. 101
Author(s):  
Rizqy Fachria

Biosurfactant as secondary metabolit produced by Bacillus subtilis. It has the ability to emulsify and reduce the surface tension. Biosurfactants produced by B. subtilis is a lipopeptide. Furthermore, biosurfactant can be utilized in microbial enhanced oil recovery (MEOR). In this research, biosurfactant of B. subtilis ATCC 19 659 were evaluated. The production use Nutrient Broth (NB) and soybean liquid waste. Application of biosurfactant in oil recovery showed that biosurfactant of NB recover 2 mL crude oil and biosurfactant of soybean liquid waste medium recover 3.67 mL.


2020 ◽  
Vol 34 (11) ◽  
pp. 14560-14572 ◽  
Author(s):  
Nadia A. Samak ◽  
Tahany Mahmoud ◽  
A. A. Aboulrous ◽  
M. M. Abdelhamid ◽  
Jianmin Xing

2018 ◽  
Vol 5 (1) ◽  
pp. 43-54
Author(s):  
Suresh Aluvihara ◽  
Jagath K Premachandra

Corrosion is a severe matter regarding the most of metal using industries such as the crude oil refining. The formation of the oxides, sulfides or hydroxides on the surface of metal due to the chemical reaction between metals and surrounding is the corrosion that  highly depended on the corrosive properties of crude oil as well as the chemical composition of ferrous metals since it was expected to investigate the effect of Murban and Das blend crude oils on the rate of corrosion of seven different ferrous metals which are used in the crude oil refining industry and investigate the change in hardness of metals. The sulfur content, acidity and salt content of each crude oil were determined. A series of similar pieces of seven different types of ferrous metals were immersed in each crude oil separately and their rates of corrosion were determined by using their relative weight loss after 15, 30 and 45 days. The corroded metal surfaces were observed under the microscope. The hardness of each metal piece was tested before the immersion in crude oil and after the corrosion with the aid of Vicker’s hardness tester. The metallic concentrations of each crude oil sample were tested using atomic absorption spectroscopy (AAS). The Das blend crude oil contained higher sulfur content and acidity than Murban crude oil. Carbon steel metal pieces showed the highest corrosion rates whereas the stainless steel metal pieces showed the least corrosion rates in both crude oils since that found significant Fe and Cu concentrations from some of crude oil samples. The mild steel and the Monel showed relatively intermediate corrosion rates compared to the other types of ferrous metal pieces in both crude oils. There was a slight decrease in the initial hardness of all the ferrous metal pieces due to corrosion.


Sign in / Sign up

Export Citation Format

Share Document