scholarly journals Can wearable technology be used to approximate cardiopulmonary exercise testing metrics?

2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Laura Jones ◽  
Laura Tan ◽  
Suzanne Carey-Jones ◽  
Nathan Riddell ◽  
Richard Davies ◽  
...  

Abstract Background Consumer wrist-worn wearable activity monitors are widely available, low cost and are able to provide a direct measurement of several markers of physical activity. Despite this, there is limited data on their use in perioperative risk prediction. We explored whether these wearables could accurately approximate metrics (anaerobic threshold, peak oxygen uptake and peak work) derived using formalised cardiopulmonary exercise testing (CPET) in patients undergoing high-risk surgery. Methods Patients scheduled for major elective intra-abdominal surgery and undergoing CPET were included. Physical activity levels were estimated through direct measures (step count, floors climbed and total distance travelled) obtained through continuous wear of a wrist worn activity monitor (Garmin Vivosmart HR+) for 7 days prior to surgery and self-report through completion of the short International Physical Activity Questionnaire (IPAQ). Correlations and receiver operating characteristic (ROC) curve analysis explored the relationships between parameters provided by CPET and physical activity. Device selection Our choice of consumer wearable device was made to maximise feasibility outcomes for this study. The Garmin Vivosmart HR+ had the longest battery life and best waterproof characteristics of the available low-cost devices. Results Of 55 patients invited to participate, 49 (mean age 65.3 ± 13.6 years; 32 males) were enrolled; 37 provided complete wearable data for analyses and 36 patients provided full IPAQ data. Floors climbed, total steps and total travelled as measured by the wearable device all showed moderate correlation with CPET parameters of peak oxygen uptake (peak VO2) (R = 0.57 (CI 0.29–0.76), R = 0.59 (CI 0.31–0.77) and R = 0.62 (CI 0.35–0.79) respectively), anaerobic threshold (R = 0.37 (CI 0.01–0.64), R = 0.39 (CI 0.04–0.66) and R = 0.42 (CI 0.07–0.68) respectively) and peak work (R = 0.56 (CI 0.27–0.75), R = 0.48 (CI 0.17–0.70) and R = 0.50 (CI 0.2–0.72) respectively). Receiver operator curve (ROC) analysis for direct and self-reported measures of 7-day physical activity could accurately approximate the ventilatory equivalent for carbon dioxide (VE/VCO2) and the anaerobic threshold. The area under these curves was 0.89 for VE/VCO2 and 0.91 for the anaerobic threshold. For peak VO2 and peak work, models fitted using just the wearable data were 0.93 for peak VO2 and 1.00 for peak work. Conclusions Data recorded by the wearable device was able to consistently approximate CPET results, both with and without the addition of patient reported activity measures via IPAQ scores. This highlights the potential utility of wearable devices in formal assessment of physical functioning and suggests they could play a larger role in pre-operative risk assessment. Ethics This study entitled “uSing wearable TEchnology to Predict perioperative high-riSk patient outcomes (STEPS)” gained favourable ethical opinion on 24 January 2017 from the Welsh Research Ethics Committee 3 reference number 17/WA/0006. It was registered on ClinicalTrials.gov with identifier NCT03328039.

2021 ◽  
Author(s):  
Matt Morgan ◽  
Laura Jones ◽  
Laura Tan ◽  
Suzanne Carey-Jones ◽  
Nathan Riddell ◽  
...  

Abstract Background Consumer wrist-worn wearable activity monitors are widely available, low cost and are able to provide a direct measurement of several markers of physical activity. Despite this, there is limited data on their use in perioperative risk prediction. We explored whether these wearables could accurately approximate metrics (anaerobic threshold, peak oxygen uptake and peak work) derived using formalised cardiopulmonary exercise testing (CPET) in patients undergoing high-risk surgery.Methods Patients scheduled for major elective intra-abdominal surgery and undergoing CPET were included. Physical activity levels were estimated through direct measures (step count, floors climbed and total distance travelled) obtained through continuous wear of a wrist worn activity monitor (Garmin Vivosmart HR+) for 7 days prior to surgery and self-report through completion of the short International Physical Activity Questionnaire (IPAQ). Correlations and receiver operating characteristic (ROC) curve analysis explored the relationships between parameters provided by CPET and physical activity. Device selection Our choice of consumer wearable device was made to maximise feasibility outcomes for this study. The Garmin Vivosmart HR+ had the longest battery life and best waterproof characteristics of the available low-cost devices.Results Of 55 patients invited to participate, 49 (mean age 65.3 ± 13.6 years; 32 male) were enrolled; 37 provided complete wearable data for analyses and 36 patients provided full IPAQ data. Floors climbed, total steps and total travelled as measured by the wearable device all showed moderate correlation with CPET parameters of peak oxygen uptake (peak VO2) (R=0.57 (CI 0.29-0.76), R=0.59 (CI 0.31-0.77) and R=0.62 (CI 0.35-0.79) respectively), anaerobic threshold (R = 0.37 (CI 0.01-0.64), R = 0.39 (CI 0.04-0.66) and R = 0.42 (CI 0.07-0.68) respectively) and peak work (R = 0.56 (CI 0.27-0.75), R = 0.48 (CI 0.17-0.70) and R = 0.50 (CI 0.2-0.72) respectively).Receiver Operator Curve (ROC) analysis for direct and self-reported measures of 7 day physical activity could accurately approximate the ventilatory equivalent for carbon dioxide (VE/VCO2) and the anaerobic threshold. The area under these curves was 0.89 for VE/VCO2 and 0.91 for the anaerobic threshold. For peak VO2 and peak work, models fitted using just the wearable data were 0.93 for peak VO2 and 1.00 for peak work.Conclusions Data recorded by the wearable device was able to consistently approximate CPET results, both with and without the addition of patient reported activity measures via IPAQ scores. This highlights the potential utility of wearable devices in formal assessment of physical functioning and suggests they could play a larger role in pre-operative risk assessment.Ethics This study entitled “uSing wearable TEchnology to Predict perioperative high-riSk patient outcomes (STEPS)” gained favourable ethical opinion on 24/1/2017 from the Welsh Research Ethics Committee 3 reference number 17/WA/0006. It was registered on ClinicalTrials.gov with identifier NCT03328039.


2021 ◽  
Author(s):  
Matt Morgan ◽  
Laura Jones ◽  
Laura Tan ◽  
Suzanne Carey-Jones ◽  
Nathan Riddell ◽  
...  

Abstract Background Consumer wrist-worn wearable activity monitors are widely available, low cost and are able to provide a direct measurement of several markers of physical activity. Despite this, there is limited data on their use in perioperative risk prediction. We explored whether these wearables could accurately approximate metrics (anaerobic threshold, peak oxygen uptake and peak work) derived using formalised cardiopulmonary exercise testing (CPET) in patients undergoing high-risk surgery. Methods Patients scheduled for major elective intra-abdominal surgery and undergoing CPET were included. Physical activity levels were estimated through direct measures (step count, floors climbed and total distance travelled) obtained through continuous wear of a wrist worn activity monitor (Garmin Vivosmart HR+) for 7 days prior to surgery and self-report through completion of the short International Physical Activity Questionnaire (IPAQ). Correlations and receiver operating characteristic (ROC) curve analysis explored the relationships between parameters provided by CPET and physical activity. Device selection Our choice of consumer wearable device was made to maximise feasibility outcomes for this study. The Garmin Vivosmart HR+ had the longest battery life and best waterproof characteristics of the available low-cost devices.Results Of 55 patients invited to participate, 49 (mean age 65.3 ± 13.6 years; 32 male) were enrolled; 37 provided complete wearable data for analyses and 36 patients provided full IPAQ data. Floors climbed, total steps and total travelled as measured by the wearable device all showed moderate correlation with CPET parameters of peak oxygen uptake (peak VO2) (R=0.57 (CI 0.29-0.76), R=0.59 (CI 0.31-0.77) and R=0.62 (CI 0.35-0.79) respectively), anaerobic threshold (R = 0.37 (CI 0.01-0.64), R = 0.39 (CI 0.04-0.66) and R = 0.42 (CI 0.07-0.68) respectively) and peak work (R = 0.56 (CI 0.27-0.75), R = 0.48 (CI 0.17-0.70) and R = 0.50 (CI 0.2-0.72) respectively). Receiver Operator Curve (ROC) analysis for direct and self-reported measures of 7 day physical activity could accurately approximate the ventilatory equivalent for carbon dioxide (VE/VCO2) and the anaerobic threshold. The area under these curves was 0.89 for VE/VCO2 and 0.91 for the anaerobic threshold. For peak VO2 and peak work, models fitted using just the wearable data were 0.93 for peak VO2 and 1.00 for peak work. Conclusions Data recorded by the wearable device was able to consistently approximate CPET results, both with and without the addition of patient reported activity measures via IPAQ scores. This highlights the potential utility of wearable devices in formal assessment of physical functioning and suggests they could play a larger role in pre-operative risk assessment. Ethics This study entitled “uSing wearable TEchnology to Predict perioperative high-riSk patient outcomes (STEPS)” gained favourable ethical opinion on 24/1/2017 from the Welsh Research Ethics Committee 3 reference number 17/WA/0006. It was registered on ClinicalTrials.gov with identifier NCT03328039.


2020 ◽  
Author(s):  
Matt Morgan ◽  
Laura Jones ◽  
Laura Tan ◽  
Suzanne Carey-Jones ◽  
Nathan Riddell ◽  
...  

Abstract Background Consumer wrist-worn wearable activity monitors are widely available, low cost and are able to provide a direct measurement of several markers of physical activity. Despite this, there is limited data on their use in perioperative risk prediction. We explored whether these wearables could accurately approximate metrics (anaerobic threshold, peak oxygen uptake and peak work) derived using formalised cardiopulmonary exercise testing (CPET) in patients undergoing high-risk surgery. Methods Patients scheduled for major elective intra-abdominal surgery and undergoing CPET were included. Physical activity levels were estimated through direct measures (step count, floors climbed and total distance travelled) obtained through continuous wear of a wrist worn activity monitor (Garmin Vivosmart HR+) for 7 days prior to surgery and self-report through completion of the short International Physical Activity Questionnaire (IPAQ). Correlations and receiver operating characteristic (ROC) curve analysis explored the relationships between parameters provided by CPET and physical activity. Device selection Our choice of consumer wearable device was made to maximise feasibility outcomes for this study. The Garmin Vivosmart HR+ had the longest battery life and best waterproof characteristics of the available low-cost devices. Results Of 55 patients invited to participate, 49 (mean age 65.3 ± 13.6 years; 32 male) were enrolled; 37 provided complete wearable data for analyses and 36 patients provided full IPAQ data. Floors climbed, total steps and total travelled as measured by the wearable device all showed moderate correlation with CPET parameters of peak oxygen uptake (peak VO2) (R=0.57 (CI 0.29-0.76), R=0.59 (CI 0.31-0.77) and R=0.62 (CI 0.35-0.79) respectively), anaerobic threshold (R = 0.37 (CI 0.01-0.64), R = 0.39 (CI 0.04-0.66) and R = 0.42 (CI 0.07-0.68) respectively) and peak work (R = 0.56 (CI 0.27-0.75), R = 0.48 (CI 0.17-0.70) and R = 0.50 (CI 0.2-0.72) respectively). Receiver Operator Curve (ROC) analysis for direct and self-reported measures of 7 day physical activity could accurately approximate the ventilatory equivalent for carbon dioxide (VE/VCO2) and the anaerobic threshold. The area under these curves was 0.89 for VE/VCO2 and 0.91 for the anaerobic threshold. For peak VO2 and peak work, models fitted using just the wearable data were 0.93 for peak VO2 and 1.00 for peak work. Conclusions Data recorded by the wearable device was able to consistently approximate CPET results, both with and without the addition of patient reported activity measures via IPAQ scores. This highlights the potential utility of wearable devices in formal assessment of physical functioning and suggests they could play a larger role in pre-operative risk assessment. Ethics This study entitled “uSing wearable TEchnology to Predict perioperative high-riSk patient outcomes (STEPS)” gained favourable ethical opinion on 24/1/2017 from the Welsh Research Ethics Committee 3 reference number 17/WA/0006. It was registered on ClinicalTrials.gov with identifier NCT03328039.


Author(s):  
William J.M. Kinnear ◽  
James H. Hull

This chapter discusses how the results of a cardiopulmonary exercise test (CPET) can be used for preoperative surgical planning. A low preoperative maximum oxygen uptake (VO2max) is associated with a poor outcome. The lower the VO2max, the worse the prognosis. Use of the anaerobic threshold is less reliable. The CPET may identify clinical problems which can be optimized prior to surgery. Pre-habilitation can improve the chances of a good outcome from surgery.


2021 ◽  
pp. 1142-1149
Author(s):  
Д. В. Троцюк ◽  
Д. С. Медведев ◽  
А. Е. Чиков ◽  
З. А. Зарипова ◽  
К. Л. Козлов

Использование кардиореспираторного нагрузочного тестирования у пациентов со злокачественными новообразованиями играет важную роль в оценке риска послеоперационных осложнений и формировании отдаленного прогноза, оптимизации реабилитационного процесса, что особенно актуально для больных старших возрастных групп, имеющих полиморбидную патологию. В статье представлены результаты анализа кардиореспираторного нагрузочного тестирования у 362 пациентов различного возраста с онкологическими заболеваниями легких и пищевода, проведен сравнительный анализ аэробных возможностей у людей пожилого и старческого возраста и других возрастных групп. Средние значения анализируемых показателей покоя были выше, чем в популяции, при достижении анаэробного порога наблюдали обратную закономерность. Наиболее высокие показатели аэробного обмена были выявлены у пациентов 40-49 лет. Наблюдался ожидаемо более низкий уровень относительного потребления кислорода при достижении анаэробного порога у больных пожилого и старческого возраста по сравнению с более молодыми пациентами. Уровень пикового потребления кислорода у женщин всех возрастных групп был выше по сравнению с мужчинами; у пациентов старшего возраста регистрировали лучшие значения в процентном соотношении с нормой. Cardiopulmonary exercise testing is a diagnostic method, which can be used for oncological patients. It shows its perspectives in measuring reserve capacity of the human organism, determining the risk of postoperative complications, and long-term prognosis. The method is also useful for optimization of rehabilitation measures, which is actual for polymorbid aged patients. In this article we present data of cardiopulmonary exercise testing of 362 patients, men and women of different ages with lung and esophagus cancer. We performed a comparative analysis of aerobic ability of gerontological patients and patients from the other age groups. The patients showed higher ranges at rest in comparison to normal population, and lower rates on anaerobic threshold. Patients from the 40-49 age group showed the best values of aerobic exchange. Aged patients had lower oxygen uptake on anaerobic threshold than other groups. Women of all ages had higher values of peak oxygen uptake then men; aged patients showed better results in comparison to the normal ranges.


2020 ◽  
Author(s):  
Piero Clavario ◽  
Vincenzo De Marzo ◽  
Roberta Lotti ◽  
Cristina Barbara ◽  
Annalisa Porcile ◽  
...  

ABSTRACTIntroductionLong-term effects of Coronavirus Disease of 2019 (COVID-19) and their sustainability in a large number of patients are of the utmost relevance. We aimed to determine: 1)functional capacity of non-severe COVID-19 survivors by cardiopulmonary exercise testing (CPET); 2)those characteristics associated with worse CPET performance.MethodsWe prospectively enrolled the first 150 consecutive subjects with laboratory-confirmed COVID-19 infection discharged alive from March to April 2020 at Azienda Sanitaria Locale (ASL)3, Genoa, Italy. At 3-month from hospital discharge, complete clinical evaluation, trans-thoracic echocardiography, cardiopulmonary exercise testing (CPET), pulmonary function test (PFT), and dominant leg extension (DLE) maximal strength evaluation were performed.ResultsExcluding severe and incomplete/missing cases, 110 patients were analyzed. Median percent predicted peak oxygen uptake (%pVO2) was 90.9(79.2-109.0)%. Thirty-eight(34.5%) patients had %pVO2 below, whereas 72(65.5%) above the 85% predicted value (indicating normality). Median PFT parameters were within normal limits.Eight(21.1%) patients had a mainly respiratory, 9(23.7%) a mainly cardiac, 3(7.9%) a mixed-cardiopulmonary, and 18(47.4%) a non-cardiopulmonary limitation of exercise. Eighty-one(73.6%) patients experimented at least one symptom, without relationship with %pVO2 (p>0.05).Multivariate linear regression analysis showed age (β=0.46, p=0.020), percent weight loss (β=-0.77, p=0.029), active smoke status (β=-7.07, p=0.019), length of hospital stay (β=-0.20, p=0.042), and DLE maximal strength (β=1.65, p=0.039) independently associated with %pVO2.ConclusionsHalf of non-severe COVID-19 survivors show functional capacity limitation mainly explained by muscular impairment, albeit cardiopulmonary causes are possible. These findings call for future research to identify patients at higher risk of long-term effects, that may benefit from careful surveillance and targeted rehabilitation.Take-home messagesat 3-month cardiopulmonary exercise testing 38/110(34.5%) non-severe COVID-19 survivors had percent predicted peak oxygen uptake (%pVO2) < 85% (indicating normality). Half of them had functional capacity limitation mainly explained by muscular impairment.


Sign in / Sign up

Export Citation Format

Share Document