scholarly journals Reduced nuclear DNA methylation and mitochondrial transcript changes in adenomas do not associate with mtDNA methylation

2018 ◽  
Vol 6 (1) ◽  
Author(s):  
M. J. Morris ◽  
L. B. Hesson ◽  
R. C. Poulos ◽  
R. L. Ward ◽  
J. W. H. Wong ◽  
...  
2021 ◽  
Vol 22 (13) ◽  
pp. 6783
Author(s):  
Renata Orłowska ◽  
Katarzyna A. Pachota ◽  
Wioletta M. Dynkowska ◽  
Agnieszka Niedziela ◽  
Piotr T. Bednarek

A plant genome usually encompasses different families of transposable elements (TEs) that may constitute up to 85% of nuclear DNA. Under stressful conditions, some of them may activate, leading to sequence variation. In vitro plant regeneration may induce either phenotypic or genetic and epigenetic changes. While DNA methylation alternations might be related, i.e., to the Yang cycle problems, DNA pattern changes, especially DNA demethylation, may activate TEs that could result in point mutations in DNA sequence changes. Thus, TEs have the highest input into sequence variation (SV). A set of barley regenerants were derived via in vitro anther culture. High Performance Liquid Chromatography (RP-HPLC), used to study the global DNA methylation of donor plants and their regenerants, showed that the level of DNA methylation increased in regenerants by 1.45% compared to the donors. The Methyl-Sensitive Transposon Display (MSTD) based on methylation-sensitive Amplified Fragment Length Polymorphism (metAFLP) approach demonstrated that, depending on the selected elements belonging to the TEs family analyzed, varying levels of sequence variation were evaluated. DNA sequence contexts may have a different impact on SV generated by distinct mobile elements belonged to various TE families. Based on the presented study, some of the selected mobile elements contribute differently to TE-related SV. The surrounding context of the TEs DNA sequence is possibly important here, and the study explained some part of SV related to those contexts.


2021 ◽  
Vol 22 (9) ◽  
pp. 4594
Author(s):  
Andrea Stoccoro ◽  
Fabio Coppedè

Epigenetic modifications of the nuclear genome, including DNA methylation, histone modifications and non-coding RNA post-transcriptional regulation, are increasingly being involved in the pathogenesis of several human diseases. Recent evidence suggests that also epigenetic modifications of the mitochondrial genome could contribute to the etiology of human diseases. In particular, altered methylation and hydroxymethylation levels of mitochondrial DNA (mtDNA) have been found in animal models and in human tissues from patients affected by cancer, obesity, diabetes and cardiovascular and neurodegenerative diseases. Moreover, environmental factors, as well as nuclear DNA genetic variants, have been found to impair mtDNA methylation patterns. Some authors failed to find DNA methylation marks in the mitochondrial genome, suggesting that it is unlikely that this epigenetic modification plays any role in the control of the mitochondrial function. On the other hand, several other studies successfully identified the presence of mtDNA methylation, particularly in the mitochondrial displacement loop (D-loop) region, relating it to changes in both mtDNA gene transcription and mitochondrial replication. Overall, investigations performed until now suggest that methylation and hydroxymethylation marks are present in the mtDNA genome, albeit at lower levels compared to those detectable in nuclear DNA, potentially contributing to the mitochondria impairment underlying several human diseases.


2019 ◽  
Vol 41 (6) ◽  
Author(s):  
Asif Ali ◽  
Yun Li ◽  
Hui Chen ◽  
Peizhou Xu ◽  
Hongyu Zhang ◽  
...  

2018 ◽  
Vol 39 (suppl_1) ◽  
Author(s):  
T Watanabe ◽  
H Okada ◽  
H Kanamori ◽  
N Miyazaki ◽  
A Tsujimoto ◽  
...  

2016 ◽  
Author(s):  
Carolyn J. Vivian ◽  
Amanda E. Brinker ◽  
Gerald C. Gooden ◽  
Christophe Legendre ◽  
Samuel Turpin ◽  
...  

1984 ◽  
Vol 4 (4) ◽  
pp. 599-603 ◽  
Author(s):  
K Scarbrough ◽  
S Hattman ◽  
U Nur

Purified nuclear DNA from two mealybug species was analyzed for its 5-methylcytosine (m5C) content by reversed-phase high-pressure liquid chromatography. We observed that the percent m5C (percentage of cytosines which are methylated) varied between the two species, between males and females of the same species, and between lines with and without supernumerary B chromosomes. This is the first case of a sex-specific difference in overall DNA methylation level. In contrast to a recent report (Deobagkar et al., J. Biosci. [India] 4:513-526, 1982), we found no other modified bases in the DNA. Overall, the percent m5C in Pseudococcus obscurus was two to three times higher than in Pseudococcus calceolariae. In both species, the percent m5C in males was higher than in females, although only in P. calceolariae was the difference statistically significant (0.68 +/- 0.02 versus 0.44 +/- 0.04). The high m5C content in males was correlated with the presence of a paternally derived, genetically inactive set of chromosomes which is facultatively heterochromatic. The presence of constitutive heterochromatin, however, was associated with a lower m5C content. Thus, for example, the percent m5C in females of a P. obscurus line with heterochromatic B chromosomes (1.09 +/- 0.04) was significantly lower than that of a related line lacking such chromosomes (1.26 +/- 0.06). Our findings are discussed with respect to the possible relationship between DNA methylation and heterochromatization.


2017 ◽  
Author(s):  
Carolyn J. Vivian ◽  
Amanda E. Brinker ◽  
Stefan Graw ◽  
Devin C. Koestler ◽  
Christophe Legendre ◽  
...  

2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Amanda F. C. Lopes

AbstractMitochondria are controlled by the coordination of two genomes: the mitochondrial and the nuclear DNA. As such, variations in nuclear gene expression as a consequence of mutations and epigenetic modifications can affect mitochondrial functionality. Conversely, the opposite could also be true. However, the relationship between mitochondrial dysfunction and epigenetics, such as nuclear DNA methylation, remains largely unexplored. Mitochondria function as central metabolic hubs controlling some of the main substrates involved in nuclear DNA methylation, via the one carbon metabolism, the tricarboxylic acid cycle and the methionine pathway. Here, we review key findings and highlight new areas of focus, with the ultimate goal of getting one step closer to understanding the genomic effects of mitochondrial dysfunction on nuclear epigenetic landscapes.


Sign in / Sign up

Export Citation Format

Share Document