scholarly journals Mitochondrial metabolism and DNA methylation: a review of the interaction between two genomes

2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Amanda F. C. Lopes

AbstractMitochondria are controlled by the coordination of two genomes: the mitochondrial and the nuclear DNA. As such, variations in nuclear gene expression as a consequence of mutations and epigenetic modifications can affect mitochondrial functionality. Conversely, the opposite could also be true. However, the relationship between mitochondrial dysfunction and epigenetics, such as nuclear DNA methylation, remains largely unexplored. Mitochondria function as central metabolic hubs controlling some of the main substrates involved in nuclear DNA methylation, via the one carbon metabolism, the tricarboxylic acid cycle and the methionine pathway. Here, we review key findings and highlight new areas of focus, with the ultimate goal of getting one step closer to understanding the genomic effects of mitochondrial dysfunction on nuclear epigenetic landscapes.

2021 ◽  
Vol 10 (1) ◽  
pp. 39
Author(s):  
Xinhua Qi ◽  
Wenlong Yan ◽  
Zhibei Cao ◽  
Mingzhu Ding ◽  
Yingjin Yuan

Polyethylene terephthalate (PET) is a widely used plastic that is polymerized by terephthalic acid (TPA) and ethylene glycol (EG). In recent years, PET biodegradation and bioconversion have become important in solving environmental plastic pollution. More and more PET hydrolases have been discovered and modified, which mainly act on and degrade the ester bond of PET. The monomers, TPA and EG, can be further utilized by microorganisms, entering the tricarboxylic acid cycle (TCA cycle) or being converted into high value chemicals, and finally realizing the biodegradation and bioconversion of PET. Based on synthetic biology and metabolic engineering strategies, this review summarizes the current advances in the modified PET hydrolases, engineered microbial chassis in degrading PET, bioconversion pathways of PET monomers, and artificial microbial consortia in PET biodegradation and bioconversion. Artificial microbial consortium provides novel ideas for the biodegradation and bioconversion of PET or other complex polymers. It is helpful to realize the one-step bioconversion of PET into high value chemicals.


2009 ◽  
Vol 21 (3) ◽  
pp. 331-345 ◽  
Author(s):  
Aditi Hazra ◽  
Charles S. Fuchs ◽  
Takako Kawasaki ◽  
Gregory J. Kirkner ◽  
David J. Hunter ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Tingting Pi ◽  
Bo Liu ◽  
Jingshan Shi

Alzheimer’s disease (AD) is a chronic neurodegenerative disease in the central nervous system that has complex pathogenesis in the elderly. The current review focuses on the epigenetic mechanisms of AD, according to the latest findings. One of the best-characterized chromatin modifications in epigenetic mechanisms is DNA methylation. Highly replicable data shows that AD occurrence is often accompanied by methylation level changes of the AD-related gene. Homocysteine (Hcy) is not only an intermediate product of one-carbon metabolism but also an important independent risk factor of AD; it can affect the cognitive function of the brain by changing the one-carbon metabolism and interfering with the DNA methylation process, resulting in cerebrovascular disease. In general, Hcy may be an environmental factor that affects AD via the DNA methylation pathway with a series of changes in AD-related substance. This review will concentrate on the relation between DNA methylation and Hcy and try to figure out their rule in the pathophysiology of AD.


Life ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 121 ◽  
Author(s):  
Pauline Wischhusen ◽  
Takaya Saito ◽  
Cécile Heraud ◽  
Sadasivam J. Kaushik ◽  
Benoit Fauconneau ◽  
...  

Selenium is an essential micronutrient and its metabolism is closely linked to the methionine cycle and transsulfuration pathway. The present study evaluated the effect of two different selenium supplements in the diet of rainbow trout (Onchorhynchus mykiss) broodstock on the one-carbon metabolism and the hepatic DNA methylation pattern in the progeny. Offspring of three parental groups of rainbow trout, fed either a control diet (NC, basal Se level: 0.3 mg/kg) or a diet supplemented with sodium selenite (SS, 0.8 mg Se/kg) or hydroxy-selenomethionine (SO, 0.7 mg Se/kg), were collected at swim-up fry stage. Our findings suggest that parental selenium nutrition impacted the methionine cycle with lower free methionine and S-adenosylmethionine (SAM) and higher methionine synthase (mtr) mRNA levels in both selenium-supplemented treatments. DNA methylation profiling by reduced representation bisulfite sequencing (RRBS) identified differentially methylated cytosines (DMCs) in offspring livers. These DMCs were related to 6535 differentially methylated genes in SS:NC, 6890 in SO:NC and 7428 in SO:SS, respectively. Genes with the highest methylation difference relate, among others, to the neuronal or signal transmitting and immune system which represent potential targets for future studies.


2020 ◽  
Vol 24 (4) ◽  
pp. 465-471 ◽  
Author(s):  
Zita Rádai ◽  
Réka Szabó ◽  
Áron Szigetvári ◽  
Nóra Zsuzsa Kiss ◽  
Zoltán Mucsi ◽  
...  

The phospha-Brook rearrangement of dialkyl 1-aryl-1-hydroxymethylphosphonates (HPs) to the corresponding benzyl phosphates (BPs) has been elaborated under solid-liquid phase transfer catalytic conditions. The best procedure involved the use of triethylbenzylammonium chloride as the catalyst and Cs2CO3 as the base in acetonitrile as the solvent at room temperature. The substrate dependence of the rearrangement has been studied, and the mechanism of the transformation under discussion was explored by quantum chemical calculations. The key intermediate is an oxaphosphirane. The one-pot version starting with the Pudovik reaction has also been developed. The conditions of this tandem transformation were the same, as those for the one-step HP→BP conversion.


Open Heart ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. e001510
Author(s):  
Albert Zishen Lim ◽  
Daniel M Jones ◽  
Matthew G D Bates ◽  
Andrew M Schaefer ◽  
John O'Sullivan ◽  
...  

ObjectiveRegular cardiac surveillance is advocated for patients with primary mitochondrial DNA disease. However, there is limited information to guide clinical practice in mitochondrial conditions caused by nuclear DNA defects. We sought to determine the frequency and spectrum of cardiac abnormalities identified in adult mitochondrial disease originated from the nuclear genome.MethodsAdult patients with a genetically confirmed mitochondrial disease were identified and followed up at the national clinical service for mitochondrial disease in Newcastle upon Tyne, UK (January 2009 to December 2018). Case notes, molecular genetics reports, laboratory data and cardiac investigations, including serial electrocardiograms and echocardiograms, were reviewed.ResultsIn this cohort-based observational study, we included 146 adult patients (92 women) (mean age 53.6±18.7 years, 95% CI 50.6 to 56.7) with a mean follow-up duration of 7.9±5.1 years (95% CI 7.0 to 8.8). Eleven different nuclear genotypes were identified: TWNK, POLG, RRM2B, OPA1, GFER, YARS2, TYMP, ETFDH, SDHA, TRIT1 and AGK. Cardiac abnormalities were detected in 14 patients (9.6%). Seven of these patients (4.8%) had early-onset cardiac manifestations: hypertrophic cardiomyopathy required cardiac transplantation (AGK; n=2/2), left ventricular (LV) hypertrophy and bifascicular heart block (GFER; n=2/3) and mild LV dysfunction (GFER; n=1/3, YARS2; n=1/2, TWNK; n=1/41). The remaining seven patients had acquired heart disease most likely related to conventional cardiovascular risk factors and presented later in life (14.6±12.8 vs 55.1±8.9 years, p<0.0001).ConclusionsOur findings demonstrate that the risk of cardiac involvement is genotype specific, suggesting that routine cardiac screening is not indicated for most adult patients with nuclear gene-related mitochondrial disease.


2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Babacar Faye ◽  
Mouhamed Sarr ◽  
Khaly Bane ◽  
Adjaratou Wakha Aidara ◽  
Seydina Ousmane Niang ◽  
...  

This study evaluated the one-year clinical performance of a one-step, self-etch adhesive (Optibond All-in-One, Kerr, CA, USA) combined with a composite (Herculite XRV Ultra, Kerr Hawe, CA, USA) to restore NCCLs with or without prior acid etching. Restorations performed by the same practitioner were evaluated at baseline and after 3, 6, and 12 months using modified USPHS criteria. At 6 months, the recall rate was 100%. The retention rate was 84.2% for restorations with prior acid etching, but statistically significant differences were observed between baseline and 6 months. Without acid etching, the retention rate was 77%, and no statistically significant difference was noted between 3 and 6 months. Marginal integrity (93.7% with and 87.7% without acid etching) and discoloration (95.3% with and 92.9% without acid etching) were scored as Alpha or Bravo, with better results after acid etching. After one year, the recall rate was 58.06%. Loss of pulp vitality, postoperative sensitivity, or secondary caries were not observed. After one year retention rate was of 90.6% and 76.9% with and without acid conditioning. Optibond All-in-One performs at a satisfactory clinical performance level for restoration of NCCLs after 12 months especially after acid etching.


2021 ◽  
Author(s):  
Dennis Larsen ◽  
Sophie R. Beeren

Template-induced kinetic trapping of specific cyclodextrins in enzyme-mediated dynamic combinatorial libraries of linear and cyclic α-glucans enables the one-step synthesis of cyclodextrins from maltose in water.


Sign in / Sign up

Export Citation Format

Share Document