scholarly journals School-level inequality measurement based categorical data: a novel approach applied to PISA

2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Lucas Sempé

AbstractThis paper introduces a new method to measure school-level inequality based on Item Response Theory (IRT) models. Categorical data collected by large-scale assessments poses diverse methodological challenges hinder measuring inequality due to data truncation and asymmetric intervals between categories. I use family possessions data from PISA 2015 to exemplify the process of computing the measurement and develop a set of country-level mixed-effects linear regression models comparing the predictive performance of the novel inequality measure with school-level Gini coefficients. I find school-level inequality is negatively associated with learning outcomes across many non-European countries.

Author(s):  
Gourav Bathla ◽  
Himanshu Aggarwal ◽  
Rinkle Rani

Clustering is one of the most important applications of data mining. It has attracted attention of researchers in statistics and machine learning. It is used in many applications like information retrieval, image processing and social network analytics etc. It helps the user to understand the similarity and dissimilarity between objects. Cluster analysis makes the users understand complex and large data sets more clearly. There are different types of clustering algorithms analyzed by various researchers. Kmeans is the most popular partitioning based algorithm as it provides good results because of accurate calculation on numerical data. But Kmeans give good results for numerical data only. Big data is combination of numerical and categorical data. Kprototype algorithm is used to deal with numerical as well as categorical data. Kprototype combines the distance calculated from numeric and categorical data. With the growth of data due to social networking websites, business transactions, scientific calculation etc., there is vast collection of structured, semi-structured and unstructured data. So, there is need of optimization of Kprototype so that these varieties of data can be analyzed efficiently.In this work, Kprototype algorithm is implemented on MapReduce in this paper. Experiments have proved that Kprototype implemented on Mapreduce gives better performance gain on multiple nodes as compared to single node. CPU execution time and speedup are used as evaluation metrics for comparison.Intellegent splitter is proposed in this paper which splits mixed big data into numerical and categorical data. Comparison with traditional algorithms proves that proposed algorithm works better for large scale of data.


2020 ◽  
Vol 10 (17) ◽  
pp. 6059
Author(s):  
Matthias Heinrich ◽  
Ute Rabe ◽  
Bernd Valeske

Analyzing eigenfrequencies of serial parts by acoustic resonance testing enables an efficient nondestructive assessment of component quality or structural state. Usually, each application is based on experimentally acquired training data, which represent the typical natural vibration behavior of the component type to be inspected. From the training data, suitable test characteristics are identified according to the inspection objective. The experimental collection of training data, which involves selecting and characterizing numerous representing parts, is often associated with a great amount of effort. Instead, this work focuses on a simulation-based generation of synthetic training data. Within an application example, the eigenfrequencies of a set of virtual parts were calculated with FEM as a function of geometry. The resulting simulation values were adapted using empirical correction factors, which were derived from both calculated and measured eigenfrequencies of machine-made reference parts. The simulation-based data were finally used to form linear regression models within a training procedure. These models enabled the precise estimation of geometric dimensions of further machine-made parts using their measured eigenfrequencies as input data. The novel approach, which requires the experimental characterization of only a few real parts, can thus significantly reduce the effort associated with efficient and reliable acoustic resonance testing.


Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3353
Author(s):  
Muhammad Harris ◽  
Johan Potgieter ◽  
Hammad Mohsin ◽  
Jim Qun Chen ◽  
Sudip Ray ◽  
...  

The materials for large scale fused filament fabrication (FFF) are not yet designed to resist thermal degradation. This research presents a novel polymer blend of polylactic acid with polypropylene for FFF, purposefully designed with minimum feasible chemical grafting and overwhelming physical interlocking to sustain thermal degradation. Multi-level general full factorial ANOVA is performed for the analysis of thermal effects. The statistical results are further investigated and validated using different thermo-chemical and visual techniques. For example, Fourier transform infrared spectroscopy (FTIR) analyzes the effects of blending and degradation on intermolecular interactions. Differential scanning calorimetry (DSC) investigates the nature of blending (grafting or interlocking) and effects of degradation on thermal properties. Thermogravimetric analysis (TGA) validates the extent of chemical grafting and physical interlocking detected in FTIR and DSC. Scanning electron microscopy (SEM) is used to analyze the morphology and phase separation. The novel approach of overwhelmed physical interlocking and minimum chemical grafting for manufacturing 3D printing blends results in high structural stability (mechanical and intermolecular) against thermal degradation as compared to neat PLA.


2019 ◽  
Vol 24 (3) ◽  
pp. 231-242 ◽  
Author(s):  
Herbert W. Marsh ◽  
Philip D. Parker ◽  
Reinhard Pekrun

Abstract. We simultaneously resolve three paradoxes in academic self-concept research with a single unifying meta-theoretical model based on frame-of-reference effects across 68 countries, 18,292 schools, and 485,490 15-year-old students. Paradoxically, but consistent with predictions, effects on math self-concepts were negative for: • being from countries where country-average achievement was high; explaining the paradoxical cross-cultural self-concept effect; • attending schools where school-average achievement was high; demonstrating big-fish-little-pond-effects (BFLPE) that generalized over 68 countries, Organisation for Economic Co-operation and Development (OECD)/non-OECD countries, high/low achieving schools, and high/low achieving students; • year-in-school relative to age; unifying different research literatures for associated negative effects for starting school at a younger age and acceleration/skipping grades, and positive effects for starting school at an older age (“academic red shirting”) and, paradoxically, even for repeating a grade. Contextual effects matter, resulting in significant and meaningful effects on self-beliefs, not only at the student (year in school) and local school level (BFLPE), but remarkably even at the macro-contextual country-level. Finally, we juxtapose cross-cultural generalizability based on Programme for International Student Assessment (PISA) data used here with generalizability based on meta-analyses, arguing that although the two approaches are similar in many ways, the generalizability shown here is stronger in terms of support for the universality of the frame-of-reference effects.


2019 ◽  
Author(s):  
Mingguang Chen ◽  
Wangxiang Li ◽  
Anshuman Kumar ◽  
Guanghui Li ◽  
Mikhail Itkis ◽  
...  

<p>Interconnecting the surfaces of nanomaterials without compromising their outstanding mechanical, thermal, and electronic properties is critical in the design of advanced bulk structures that still preserve the novel properties of their nanoscale constituents. As such, bridging the p-conjugated carbon surfaces of single-walled carbon nanotubes (SWNTs) has special implications in next-generation electronics. This study presents a rational path towards improvement of the electrical transport in aligned semiconducting SWNT films by deposition of metal atoms. The formation of conducting Cr-mediated pathways between the parallel SWNTs increases the transverse (intertube) conductance, while having negligible effect on the parallel (intratube) transport. In contrast, doping with Li has a predominant effect on the intratube electrical transport of aligned SWNT films. Large-scale first-principles calculations of electrical transport on aligned SWNTs show good agreement with the experimental electrical measurements and provide insight into the changes that different metal atoms exert on the density of states near the Fermi level of the SWNTs and the formation of transport channels. </p>


2019 ◽  
Author(s):  
Chem Int

This research work presents a facile and green route for synthesis silver sulfide (Ag2SNPs) nanoparticles from silver nitrate (AgNO3) and sodium sulfide nonahydrate (Na2S.9H2O) in the presence of rosemary leaves aqueous extract at ambient temperature (27 oC). Structural and morphological properties of Ag2SNPs nanoparticles were analyzed by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The surface Plasmon resonance for Ag2SNPs was obtained around 355 nm. Ag2SNPs was spherical in shape with an effective diameter size of 14 nm. Our novel approach represents a promising and effective method to large scale synthesis of eco-friendly antibacterial activity silver sulfide nanoparticles.


2020 ◽  
Author(s):  
Elaine Gallagher ◽  
Bas Verplanken ◽  
Ian Walker

Social norms have been shown to be an effective behaviour change mechanism across diverse behaviours, demonstrated from classical studies to more recent behaviour change research. Much of this research has focused on environmentally impactful actions. Social norms are typically utilised for behaviour change in social contexts, which facilitates the important element of the behaviour being visible to the referent group. This ensures that behaviours can be learned through observation and that deviations from the acceptable behaviour can be easily sanctioned or approved by the referent group. There has been little focus on how effective social norms are in private or non-social contexts, despite a multitude of environmentally impactful behaviours occurring in the home, for example. The current study took the novel approach to explore if private behaviours are important in the context of normative influence, and if the lack of a referent groups results in inaccurate normative perceptions and misguided behaviours. Findings demonstrated variance in normative perceptions of private behaviours, and that these misperceptions may influence behaviour. These behaviours are deemed to be more environmentally harmful, and respondents are less comfortable with these behaviours being visible to others, than non-private behaviours. The research reveals the importance of focusing on private behaviours, which have been largely overlooked in the normative influence literature.


GigaScience ◽  
2020 ◽  
Vol 9 (12) ◽  
Author(s):  
Ariel Rokem ◽  
Kendrick Kay

Abstract Background Ridge regression is a regularization technique that penalizes the L2-norm of the coefficients in linear regression. One of the challenges of using ridge regression is the need to set a hyperparameter (α) that controls the amount of regularization. Cross-validation is typically used to select the best α from a set of candidates. However, efficient and appropriate selection of α can be challenging. This becomes prohibitive when large amounts of data are analyzed. Because the selected α depends on the scale of the data and correlations across predictors, it is also not straightforwardly interpretable. Results The present work addresses these challenges through a novel approach to ridge regression. We propose to reparameterize ridge regression in terms of the ratio γ between the L2-norms of the regularized and unregularized coefficients. We provide an algorithm that efficiently implements this approach, called fractional ridge regression, as well as open-source software implementations in Python and matlab (https://github.com/nrdg/fracridge). We show that the proposed method is fast and scalable for large-scale data problems. In brain imaging data, we demonstrate that this approach delivers results that are straightforward to interpret and compare across models and datasets. Conclusion Fractional ridge regression has several benefits: the solutions obtained for different γ are guaranteed to vary, guarding against wasted calculations; and automatically span the relevant range of regularization, avoiding the need for arduous manual exploration. These properties make fractional ridge regression particularly suitable for analysis of large complex datasets.


Author(s):  
Silvia Huber ◽  
Lars B. Hansen ◽  
Lisbeth T. Nielsen ◽  
Mikkel L. Rasmussen ◽  
Jonas Sølvsteen ◽  
...  

Author(s):  
Jin Zhou ◽  
Qing Zhang ◽  
Jian-Hao Fan ◽  
Wei Sun ◽  
Wei-Shi Zheng

AbstractRecent image aesthetic assessment methods have achieved remarkable progress due to the emergence of deep convolutional neural networks (CNNs). However, these methods focus primarily on predicting generally perceived preference of an image, making them usually have limited practicability, since each user may have completely different preferences for the same image. To address this problem, this paper presents a novel approach for predicting personalized image aesthetics that fit an individual user’s personal taste. We achieve this in a coarse to fine manner, by joint regression and learning from pairwise rankings. Specifically, we first collect a small subset of personal images from a user and invite him/her to rank the preference of some randomly sampled image pairs. We then search for the K-nearest neighbors of the personal images within a large-scale dataset labeled with average human aesthetic scores, and use these images as well as the associated scores to train a generic aesthetic assessment model by CNN-based regression. Next, we fine-tune the generic model to accommodate the personal preference by training over the rankings with a pairwise hinge loss. Experiments demonstrate that our method can effectively learn personalized image aesthetic preferences, clearly outperforming state-of-the-art methods. Moreover, we show that the learned personalized image aesthetic benefits a wide variety of applications.


Sign in / Sign up

Export Citation Format

Share Document