scholarly journals Ionospheric irregularities and scintillations: a direct comparison of in situ density observations with ground-based L-band receivers

2020 ◽  
Vol 72 (1) ◽  
Author(s):  
Sharon Aol ◽  
Stephan Buchert ◽  
Edward Jurua

Abstract Ionospheric irregularities can affect satellite communication and navigation by causing scintillations of radio signals. The scintillations are routinely measured using ground-based networks of receivers. This study presents observations of ionospheric irregularities by Langmuir probes on the Swarm satellites. They are compared with amplitude scintillation events recorded by the Global Positioning System-Scintillation Network and Decision Aid (GPS-SCINDA) receiver installed in Mbarara (Lat: $$0.6^{\circ }\hbox {S}$$ 0 . 6 ∘ S , Lon: $$30.8^{\circ }\hbox {E}$$ 30 . 8 ∘ E , Mag. lat: $$10.2^{\circ }\hbox {S}$$ 10 . 2 ∘ S ). The study covers the years from 2014 to 2018 when both data sets were available. It was found that the ground-based amplitude scintillations were enhanced when Swarm registered ionospheric irregularities for a large number of passes. The number of matching observations was greater for Swarm A and C which orbited at lower altitudes compared to Swarm B. However, some counterexamples, i.e., cases when in situ electron density fluctuations were not associated with any observed L-band amplitude scintillation and vice versa, were also found. Therefore, mismatches between observed irregularity structures and scintillations can occur just over a few minutes and within distances of a few tens of kilometers. The amplitude scintillation strength, characterized by the S4 index was estimated from the electron density data using the well-known phase screen model for weak scattering. The derived amplitude scintillation was on average lower for Swarm B than for A and C and less in accordance with the observed range. Irregularities at an altitude of about 450 km contribute strongly to scintillations in the L-band, while irregularities at about 510-km altitude contribute significantly less. We infer that in situ density fluctuations observed on passes over or near Mbarara may be used to indicate the risk that ionospheric radio wave scintillations occur at that site.

2020 ◽  
Vol 38 (5) ◽  
pp. 1063-1080
Author(s):  
Sharon Aol ◽  
Stephan Buchert ◽  
Edward Jurua ◽  
Marco Milla

Abstract. Ionospheric irregularities are a common phenomenon in the low-latitude ionosphere. They can be seen in situ as depletions of plasma density, radar plasma plumes, or ionogram spread F by ionosondes. In this paper, we compared simultaneous observations of plasma plumes by the Jicamarca Unattended Long-term Investigations of the Ionosphere and Atmosphere (JULIA) radar, ionogram spread F generated from ionosonde observations installed at the Jicamarca Radio Observatory (JRO), and irregularities observed in situ by Swarm in order to determine whether Swarm in situ observations can be used as indicators of the presence of plasma plumes and spread F on the ground. The study covered the years from 2014 to 2018, as this was the period for which JULIA, Swarm, and ionosonde data sets were available. Overall, the results showed that Swarm's in situ density fluctuations on magnetic flux tubes passing over (or near) the JRO may be used as indicators of plasma plumes and spread F over (or near) the observatory. For Swarm and the ground-based observations, a classification procedure was conducted based on the presence or absence of ionospheric irregularities. There was a strong consensus between ground-based observations of ionospheric irregularities and Swarm's depth of disturbance of electron density for most passes. Cases, where ionospheric irregularities were observed on the ground with no apparent variation in the in situ electron density or vice versa, suggest that irregularities may either be localized horizontally or restricted to particular height intervals. The results also showed that the Swarm and ground-based observations of ionospheric irregularities had similar local time statistical trends with the highest occurrence obtained between 20:00 and 22:00 LT. Moreover, similar seasonal patterns of the occurrence of in situ and ground-based ionospheric irregularities were observed with the highest percentage occurrence at the December solstice and the equinoxes and low occurrence at the June solstice. The observed seasonal pattern was explained in terms of the pre-reversal enhancement (PRE) of the vertical plasma drift. Initial findings from this research indicate that fluctuations in the in situ density observed meridionally along magnetic field lines passing through the JRO can be used as an indication of the existence of well-developed plasma plumes.


2019 ◽  
Author(s):  
Sharon Aol ◽  
Stephan Buchert ◽  
Edward Jurua ◽  
Marco Milla

Abstract. Ionospheric irregularities are a common phenomenon in the low latitude ionosphere. They can be seen in situ as depletions of plasma density, radar plasma plumes or ionogram spread F by ionosondes. In this paper, we compared simultaneous observations of plasma plumes by the Jicamarca unattended long term investigations of the ionosphere and atmosphere (JULIA) radar, ionogram spread F generated from ionosonde observations installed at the Jicamarca Radio Observatory (JRO), and irregularities observed in situ by Swarm, to determine whether Swarm in situ observations can be used as indicators of the presence of plasma plumes and spread-F on the ground. The study covered the years from 2014 to 2018 when all the data-sets were available. Overall, the results showed that Swarm's in situ density fluctuations on magnetic flux tubes passing over (or near) the JRO may be used as indicators of plasma plumes and spread-F over (or near) the observatory. For Swarm and the ground-based observations, a classification procedure was conducted based on the presence or absence of ionospheric irregularity structures. There was a strong consensus between ground-based observations of irregularity structures and Swarm's depth of disturbance of electron density for most passes. Cases, where irregularity structures were observed on the ground with no apparent variation in the in situ electron density or vice versa, suggest that irregularities may either be localized horizontally or restricted to particular height intervals. The results also showed that the Swarm and ground-based observations of ionospheric irregularities had similar local time statistical trends with the highest occurrence obtained between 20:00 and 22:00 LT. Also, similar seasonal patterns of occurrence of in situ and ground-based ionospheric irregularities were observed with the highest percentage occurrence in December Solstice and Equinoxes and low occurrence in June Solstice. The observed seasonal pattern was explained in terms of the pre-reversal enhancement (PRE) of the vertical plasma drift. Initial findings from this research indicate that fluctuations of in situ density observed meridionally along magnetic field lines passing through JRO can be used as an indication of the existence of well-developed plasma plumes.


2020 ◽  
Author(s):  
Wojciech Jarmolowski ◽  
Pawel Wielgosz ◽  
Anna Krypiak-Gregorczyk ◽  
Beata Milanowska

<p>Three Swarm satellites are equipped with Langmuir Probes (LP) measuring in-situ electron density of Earth electric field and POD GNSS receivers determining topside total electron content (TEC) in the upper ionosphere. It is proved that different events on the Earth and in its atmopshere have their own impact on Earth electric field, and the earthquakes are in this group. Many strong earthquakes induce tsunamis, which are also suspected as contributing to the gravity waves having an impact on the ionospheric TEC. These reasons encourage to the study on the sensitivity of Swarm LP and POD GNSS data to the abovementioned phenomena. Referring to the sensitivity of TEC data derived from GNSS stations to Earthquakes, sensitivity of GNSS and LP data at around 500 km high orbit is analyzed here. A similar orbital height can be found in case of many LEO missions equipped at least with GNSS POD receivers, which makes Swarm especially interesting data acquisition platforms.</p><p>The investigation of Swarm data in view of Tsunamis and earthquakes is difficult due to several factors. There are only three satellites, the two of which fly almost together, which gives in fact only two points of the survey. The orbital repetition period is long, which seriously limits the number of comparable observations in terms of the location and time of the day. Finally, the number of large earthquakes and tsunami events in time of Swarm science mission is low, and many Earthquakes do not coincide sufficiently with Swarm passes in time and space. All these factors, however, doesn’t exclude an opportunity of analyzing of Swarm data passes above the earthquakes of magnitude nearby 8, linked with the tsunamis reaching several decimeters.</p><p>Swarm LP data is detrended and analyzed before the earthquakes and also during the earthquakes and resulting tsunami events. The GNSS POD topside TEC from Swarm is analyzed together as a background for LP data. In-situ electron density disturbances occurring during a pass close to the earthquake is compared to selected STEC measurements between LEO and GNSS satellites. Additionally absolute STEC values from selected nearby ground stations are analyzed in order to  find existing correlations for detected disturbances in the electric and magnetic fields. All the observations are sparse in time and space, and therefore, leave some unanswered questions and uncertainties. However, several interesting perturbations over earthquake/tsunami events are observable in both Swarm LP data and GNSS TEC data.</p>


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Paola De Michelis ◽  
Giuseppe Consolini ◽  
Alessio Pignalberi ◽  
Roberta Tozzi ◽  
Igino Coco ◽  
...  

AbstractThe present work focuses on the analysis of the scaling features of electron density fluctuations in the mid- and high-latitude topside ionosphere under different conditions of geomagnetic activity. The aim is to understand whether it is possible to identify a proxy that may provide information on the properties of electron density fluctuations and on the possible physical mechanisms at their origin, as for instance, turbulence phenomena. So, we selected about 4 years (April 2014–February 2018) of 1 Hz electron density measurements recorded on-board ESA Swarm A satellite. Using the Auroral Electrojet (AE) index, we identified two different geomagnetic conditions: quiet (AE < 50 nT) and active (AE > 300 nT). For both datasets, we evaluated the first- and second-order scaling exponents and an intermittency coefficient associated with the electron density fluctuations. Then, the joint probability distribution between each of these quantities and the rate of change of electron density index was also evaluated. We identified two families of plasma density fluctuations characterized by different mean values of both the scaling exponents and the considered ionospheric index, suggesting that different mechanisms (instabilities/turbulent processes) can be responsible for the observed scaling features. Furthermore, a clear different localization of the two families in the magnetic latitude—magnetic local time plane is found and its dependence on geomagnetic activity levels is analyzed. These results may well have a bearing about the capability of recognizing the turbulent character of irregularities using a typical ionospheric plasma irregularity index as a proxy.


2021 ◽  
Vol 922 (2) ◽  
pp. L31
Author(s):  
Siyao Xu ◽  
David H. Weinberg ◽  
Bing Zhang

Abstract Extragalactic fast radio bursts (FRBs) have large dispersion measures (DMs) and are unique probes of intergalactic electron density fluctuations. By using the recently released First CHIME/FRB Catalog, we reexamined the structure function (SF) of DM fluctuations. It shows a large DM fluctuation similar to that previously reported in Xu & Zhang, but no clear correlation hinting toward large-scale turbulence is reproduced with this larger sample. To suppress the distortion effect from FRB distances and their host DMs, we focus on a subset of CHIME catalog with DM < 500 pc cm−3. A trend of nonconstant SF and nonzero correlation function (CF) at angular separations θ less than 10° is seen, but with large statistical uncertainties. The difference found between SF and that derived from CF at θ ≲ 10° can be ascribed to the large statistical uncertainties or the density inhomogeneities on scales on the order of 100 Mpc. The possible correlation of electron density fluctuations and inhomogeneities of density distribution should be tested when several thousands of FRBs are available.


2000 ◽  
Vol 177 ◽  
pp. 539-544
Author(s):  
Y. Gupta

AbstractIn this paper, I review our current understanding of interstellar scintillations (ISS) of pulsars. The emphasis is on new results that have appeared during the last five years. The topics covered include (i) review of the understanding of refractive ISS (ii) the shape of the spectrum of electron density fluctuations in the interstellar medium (iii) the distribution of scattering plasma in the Galaxy (iv) resolving pulsar emission regions using ISS and (v) ISS and pulsar velocities.


Sign in / Sign up

Export Citation Format

Share Document