plasma plumes
Recently Published Documents


TOTAL DOCUMENTS

145
(FIVE YEARS 17)

H-INDEX

24
(FIVE YEARS 1)

2021 ◽  
pp. 1-20
Author(s):  
J. D. Burch ◽  
D. Han ◽  
S. N. Averkin

Abstract This paper presents a study of a novel type of magnetic nozzle that allows for three-dimensional (3-D) steering of a plasma plume. Numerical simulations were performed using Tech-X’s USim® software to quantify the nozzle’s capabilities. A 2-D planar magnetic nozzle was applied to plumes of a nominal pulsed inductive plasma (PIP) source with discharge parameters similar to those of Missouri S&T’s Missouri Plasmoid Experiment (MPX). Argon and xenon plumes were considered. Simulations were verified and validated through a mesh convergence study as well as comparison with available experimental data. Periodicity was achieved over the simulation run time and phase angle samples were taken to examine plume evolution over pulse cycles. The resulting pressure, velocity, and density fields were analysed for nozzle angles from 0° to 14°. It was found that actual plume divergence was small compared to the nozzle angle. Even with an offset angle of 14° for the magnetic nozzle, the plume vector angle was only about 2° for argon and less than 1° for xenon. The parameters that had the most effect on the vectoring angle were found to be the coil current and inlet velocity.


2021 ◽  
Vol 87 (4) ◽  
Author(s):  
G. Fiksel ◽  
W. Fox ◽  
M.J. Rosenberg ◽  
D.B. Schaeffer ◽  
J. Matteucci ◽  
...  

Electron energization during merging of magnetized plasmas is studied using the OMEGA and OMEGA EP laser facilities by colliding two plasma plumes, each containing a Biermann-battery self-generated magnetic field. Two neighbouring plasma plumes are produced by intense laser beams, and the anti-parallel Biermann fields merge and reconnect in the process of the plumes’ expansion and collision. To isolate the merging as an acceleration source, the electron energy spectra obtained from two-plume collision shots are compared with the spectra from single-plume shots. Single-plume shots exhibit an energized electron tail with energies up to ${\sim }250\ \textrm {keV}$ . The electrons in merging experiments are additionally accelerated by ${\sim }50\text {--}100$ keV compared to single-plume shots.


Optik ◽  
2021 ◽  
pp. 167680
Author(s):  
Srinivasa Rao Konda ◽  
Sandeep Kumar Maurya ◽  
Rashid A. Ganeev ◽  
Yu Hang Lai ◽  
Chunlei Guo ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2243
Author(s):  
Tong Zhou ◽  
Sebastian Kraft ◽  
Walter Perrie ◽  
Jörg Schille ◽  
Udo Löschner ◽  
...  

We report on novel observations of directed re-deposition of ablation debris during the ultrafast laser micro-structuring of stainless steel in the air with multi-beams in close proximity on the surface. This interesting phenomenon is observed with both 10 ps and 600 fs NIR laser pulses at 5 kHz repetition rate. Ablation spot geometries could be altered with the use of beam splitting optics or a phase-only Spatial Light modulator. At low fluence (F ~ 1.0 J cm−2) and pulse exposure of a few hundred pulses, the debris appears as concentrated narrow “filaments” connecting the ablation spots, while at higher fluence, (F ~ 5.0 J cm−2) energetic jets of material emanated symmetrically along the axes of symmetry, depositing debris well beyond the typical re-deposition radius with a single spot. Patterns of backward re-deposition of debris to the surface are likely connected with the colliding shock waves and plasma plumes with the ambient air causing stagnation when the spots are in close proximity. The 2D surface debris patterns are indicative of the complex 3D interactions involved over wide timescales during ablation from picoseconds to microseconds.


Atoms ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 1
Author(s):  
Jingguang Liang ◽  
Mottamchetty Venkatesh ◽  
Ganjaboy S. Boltaev ◽  
Rashid A. Ganeev ◽  
Yu Hang Lai ◽  
...  

Resonance-enhanced harmonics from laser-produced plasma plumes are an interesting phenomenon, whose underlying mechanism is still under debate. In particular, it is unclear whether the macroscopic dispersion properties of the plasma are the key factors for the formation of the enhancement. To shed light on this problem, we perform experiments with two-component plasmas, in which one of the components (tin) is known to be able to generate enhanced harmonics and the other component (lead) is known for altering the overall dispersion properties of the plasma medium. We compare the harmonics spectra from the plasma of pure tin and the plasma of tin/lead alloy. Depending on the driving wavelength, we observe enhanced harmonics at around 47 or 44 nm in both types of plasmas. The two enhanced regions could be attributed to resonances in singly-charged and doubly-charged tin ions, respectively. Our results indicate that the co-existence of lead plasma does not destroy the presence of the enhanced harmonics of tin plasma, and it seems to suggest that the macroscopic properties of the plasma are not the origin of the resonance-enhanced harmonics in tin.


2020 ◽  
Vol 38 (5) ◽  
pp. 1063-1080
Author(s):  
Sharon Aol ◽  
Stephan Buchert ◽  
Edward Jurua ◽  
Marco Milla

Abstract. Ionospheric irregularities are a common phenomenon in the low-latitude ionosphere. They can be seen in situ as depletions of plasma density, radar plasma plumes, or ionogram spread F by ionosondes. In this paper, we compared simultaneous observations of plasma plumes by the Jicamarca Unattended Long-term Investigations of the Ionosphere and Atmosphere (JULIA) radar, ionogram spread F generated from ionosonde observations installed at the Jicamarca Radio Observatory (JRO), and irregularities observed in situ by Swarm in order to determine whether Swarm in situ observations can be used as indicators of the presence of plasma plumes and spread F on the ground. The study covered the years from 2014 to 2018, as this was the period for which JULIA, Swarm, and ionosonde data sets were available. Overall, the results showed that Swarm's in situ density fluctuations on magnetic flux tubes passing over (or near) the JRO may be used as indicators of plasma plumes and spread F over (or near) the observatory. For Swarm and the ground-based observations, a classification procedure was conducted based on the presence or absence of ionospheric irregularities. There was a strong consensus between ground-based observations of ionospheric irregularities and Swarm's depth of disturbance of electron density for most passes. Cases, where ionospheric irregularities were observed on the ground with no apparent variation in the in situ electron density or vice versa, suggest that irregularities may either be localized horizontally or restricted to particular height intervals. The results also showed that the Swarm and ground-based observations of ionospheric irregularities had similar local time statistical trends with the highest occurrence obtained between 20:00 and 22:00 LT. Moreover, similar seasonal patterns of the occurrence of in situ and ground-based ionospheric irregularities were observed with the highest percentage occurrence at the December solstice and the equinoxes and low occurrence at the June solstice. The observed seasonal pattern was explained in terms of the pre-reversal enhancement (PRE) of the vertical plasma drift. Initial findings from this research indicate that fluctuations in the in situ density observed meridionally along magnetic field lines passing through the JRO can be used as an indication of the existence of well-developed plasma plumes.


2020 ◽  
Vol 27 (9) ◽  
pp. 093109
Author(s):  
Alamgir Mondal ◽  
R. K. Singh ◽  
Vishnu Chaudhari ◽  
H. C. Joshi

Sign in / Sign up

Export Citation Format

Share Document