scholarly journals Microbial production of butyl butyrate: from single strain to cognate consortium

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Jean Paul Sinumvayo ◽  
Yin Li ◽  
Yanping Zhang

AbstractButyl butyrate (BB) is an important chemical with versatile applications in beverage, food and cosmetics industries. Since chemical synthesis of BB may cause adverse impacts on the environment, biotechnology is an emerging alternative approach for microbial esters biosynthesis. BB can be synthesized by using a single Clostridium strain natively producing butanol or butyrate, with exogenously supplemented butyrate or butanol, in the presence of lipase. Recently, E. coli strains have been engineered to produce BB, but the titer and yield remained very low. This review highlighted a new trend of developing cognate microbial consortium for BB production and associated challenges, and end up with new prospects for further improvement for microbial BB biosynthesis.

2020 ◽  
Author(s):  
Jean Paul Sinumvayo ◽  
Chunhua Zhao ◽  
Guoxia Liu ◽  
Yanping Zhang ◽  
Yin Li

Abstract Esters are widely used in plastic, texture, fiber, and petroleum industries. Usually, esters are produced from chemical synthesis or enzymatic processes from the corresponding alcohols and acids. Recently, fermentation production of esters was developed with supplementation of precursors (either alcohol or acid, or both at once). Here using butyl butyrate as an example, we demonstrated that we can use a microbial consortium developed from two engineered butyrate- and butanol-producing E. coli strains for the production of ester, with the assistance of exogenously added lipase. The synthesizing pathways for both precursors and the lipase-based esterification reaction created a “diamond-shaped” consortium. The concentration of the precursors for ester biosynthesis could be altered by adjusting the ratio of the inoculum of each E. coli strain in the consortium. Upon appropriate optimization, the consortium produced 7.2 g/L butyl butyrate without the exogenous addition of butanol or butyrate, which is the highest titer of butyl butyrate produced by E. coli reported to date. This study thus provides a new way for the biotechnological production of esters.


2021 ◽  
Author(s):  
Jean Paul Sinumvayo ◽  
Chunhua Zhao ◽  
Guoxia Liu ◽  
Yin Li ◽  
Yanping Zhang

Abstract Esters are widely used in plastics, textile fibers, and general petrochemicals. Usually, esters are produced via chemical synthesis or enzymatic processes from the corresponding alcohols and acids. However, the fermentative production of esters from alcohols and/or acids has recently also become feasible. Here we report a cognate microbial consortium capable of producing butyl butyrate. This microbial consortium consists of two engineered butyrate- and butanol-producing E. coli strains with nearly identical genetic background. The pathways for the synthesis of butyrate and butanol from butyryl-CoA in the respective E. coli strains, together with a lipase-catalyzed esterification reaction, created a “diamond-shaped” consortium. The concentration of butyrate and butanol in the fermentation vessel could be altered by adjusting the inoculation ratios of each E. coli strain in the consortium. After optimization, the consortium produced 7.2 g/L butyl butyrate with a yield of 0.12 g/g glucose without the exogenous addition of butanol or butyrate. To our best knowledge, this is the highest titer and yield of butyl butyrate produced by E. coli reported to date. This study thus provides a new way for the biotechnological production of esters.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Jean Paul Sinumvayo ◽  
Chunhua Zhao ◽  
Guoxia Liu ◽  
Yin Li ◽  
Yanping Zhang

AbstractEsters are widely used in plastics, textile fibers, and general petrochemicals. Usually, esters are produced via chemical synthesis or enzymatic processes from the corresponding alcohols and acids. However, the fermentative production of esters from alcohols and/or acids has recently also become feasible. Here we report a cognate microbial consortium capable of producing butyl butyrate. This microbial consortium consists of two engineered butyrate- and butanol-producing E. coli strains with nearly identical genetic background. The pathways for the synthesis of butyrate and butanol from butyryl-CoA in the respective E. coli strains, together with a lipase-catalyzed esterification reaction, created a “diamond-shaped” consortium. The concentration of butyrate and butanol in the fermentation vessel could be altered by adjusting the inoculation ratios of each E. coli strain in the consortium. After optimization, the consortium produced 7.2 g/L butyl butyrate with a yield of 0.12 g/g glucose without the exogenous addition of butanol or butyrate. To our best knowledge, this is the highest titer and yield of butyl butyrate produced by E. coli reported to date. This study thus provides a new way for the biotechnological production of esters.


Biomolecules ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 539
Author(s):  
Alexey L. Kayushin ◽  
Julia A. Tokunova ◽  
Ilja V. Fateev ◽  
Alexandra O. Arnautova ◽  
Maria Ya. Berzina ◽  
...  

During the preparative synthesis of 2-fluorocordycepin from 2-fluoroadenosine and 3′-deoxyinosine catalyzed by E. coli purine nucleoside phosphorylase, a slowdown of the reaction and decrease of yield down to 5% were encountered. An unknown nucleoside was found in the reaction mixture and its structure was established. This nucleoside is formed from the admixture of 2′,3′-anhydroinosine, a byproduct in the preparation of 3-′deoxyinosine. Moreover, 2′,3′-anhydroinosine forms during radical dehalogenation of 9-(2′,5′-di-O-acetyl-3′-bromo- -3′-deoxyxylofuranosyl)hypoxanthine, a precursor of 3′-deoxyinosine in chemical synthesis. The products of 2′,3′-anhydroinosine hydrolysis inhibit the formation of 1-phospho-3-deoxyribose during the synthesis of 2-fluorocordycepin. The progress of 2′,3′-anhydroinosine hydrolysis was investigated. The reactions were performed in D2O instead of H2O; this allowed accumulating intermediate substances in sufficient quantities. Two intermediates were isolated and their structures were confirmed by mass and NMR spectroscopy. A mechanism of 2′,3′-anhydroinosine hydrolysis in D2O is fully determined for the first time.


2000 ◽  
Vol 12 (2) ◽  
pp. 118-125 ◽  
Author(s):  
Randall S. Singer ◽  
Wesley O. Johnson ◽  
Joan S. Jeffrey ◽  
Richard P. Chin ◽  
Tim E. Carpenter ◽  
...  

A general problem for microbiologists is determining the number of phenotypically similar colonies growing on an agar plate that must be analyzed in order to be confident of identifying all of the different strains present in the sample. If a specified number of colonies is picked from a plate on which the number of unique strains of bacteria is unknown, assigning a probability of correctly identifying all of the strains present on the plate is not a simple task. With Escherichia coli of avian cellulitis origin as a case study, a statistical model was designed that would delineate sample sizes for efficient and consistent identification of all the strains of phenotypically similar bacteria in a clinical sample. This model enables the microbiologist to calculate the probability that all of the strains contained within the sample are correctly identified and to generate probability-based sample sizes for colony identification. The probability of cellulitis lesions containing a single strain of E. coli was 95.4%. If one E. coli strain is observed out of three colonies randomly selected from a future agar plate, the probability is 98.8% that only one strain is on the plate. These results are specific for this cellulitis E. coli scenario. For systems in which the number of bacterial strains per sample is variable, this model provides a quantitative means by which sample sizes can be determined.


2013 ◽  
Vol 80 (1) ◽  
pp. 119-127 ◽  
Author(s):  
Kun Yang ◽  
Eulyn Pagaling ◽  
Tao Yan

ABSTRACTPresently, the understanding of bacterial enteric diseases in the community and their virulence factors relies almost exclusively on clinical disease reporting and examination of clinical pathogen isolates. This study aimed to investigate the feasibility of an alternative approach that monitors potential enteropathogenicEscherichia coli(EPEC) and enterohemorrhagicE. coli(EHEC) prevalence and intimin gene (eae) diversity in a community by directly quantifying and characterizing target virulence genes in the sanitary sewage. The quantitative PCR (qPCR) quantification of theeae,stx1, andstx2genes in sanitary sewage samples collected over a 13-month period detectedeaein all 13 monthly sewage samples at significantly higher abundance (93 to 7,240 calibrator cell equivalents [CCE]/100 ml) thanstx1andstx2, which were detected sporadically. The prevalence level of potential EPEC in the sanitary sewage was estimated by calculating the ratio ofeaetouidA, which averaged 1.0% (σ = 0.4%) over the 13-month period. Cloning and sequencing of theeaegene directly from the sewage samples covered the majority of theeaediversity in the sewage and detected 17 uniqueeaealleles belonging to 14 subtypes. Among them,eae-β2 was identified to be the most prevalent subtype in the sewage, with the highest detection frequency in the clone libraries (41.2%) and within the different sampling months (85.7%). Additionally, sewage and environmentalE. coliisolates were also obtained and used to determine the detection frequencies of the virulence genes as well aseaegenetic diversity for comparison.


2019 ◽  
Vol 15 ◽  
pp. 2563-2568
Author(s):  
Debasish Pal ◽  
Balaram Mukhopadhyay

The total chemical synthesis of the pentasaccharide repeating unit of the O-polysaccharide from E. coli O132 is accomplished in the form of its 2-aminoethyl glycoside. The 2-aminoethyl glycoside is particularly important as it allows further glycoconjugate formation utilizing the terminal amine without affecting the stereochemistry of the reducing end. The target was achieved through a [3 + 2] strategy where the required monosaccharide building blocks are prepared from commercially available sugars through rational protecting group manipulation. The NIS-mediated activation of thioglycosides was used extensively for the glycosylation reactions throughout.


1992 ◽  
Vol 3 (1) ◽  
pp. 14-18
Author(s):  
Daniel B Gregson ◽  
Anne G Matlow ◽  
Andrew E Simor ◽  
Peter G Tuffnell ◽  
Donald E Low ◽  
...  

In a regional oncology hospital using cotrimoxazole (trimethoprim-sulphamethoxazole) prophylaxis during chemotherapy-induced neutropenia, a single strain ofEscherichia coli(indole negative) caused 15 of 27 episodes of Gram-negative rod bacteremia in 1987, and four of 32 such episodes in 1988. This biotype had not been recovered in 1986. Investigations during this ‘outbreak’ of bacteremias revealed enteric colonization with this strain ofE coliin 37% of patients on leukemia or bone marrow transplant wards and in several staff members in July 1987. In 1988, 11 of 32 Gram-negative rod bacteremias were secondary to other strains of indole positiveE coliof several different biotypes and plasmid profiles. Indole negative strains all exhibited low level trimethoprim resistance, whereas indole positive strains which subsequently appeared exhibited high level trimethoprim resistance. Failure of cotrimoxazole prophylaxis was initially due to the clonal dissemination of a single strain ofE coliwithin the institution, with the subsequent appearance of multipleE colistrains with probable differing genetic bases for their resistance.


1999 ◽  
Vol 62 (11) ◽  
pp. 1243-1247 ◽  
Author(s):  
SUSAN E. ANSAY ◽  
KIM A. DARLING ◽  
CHARLES W. KASPAR

The survival of Escherichia coli O157:H7 and of a nonpathogenic control strain of E. coli was monitored in raw ground beef that was stored at 2°C for 4 weeks, −2°C for 4 weeks, 15°C for 4 h and then −2°C for 4 weeks, and −20°C. Irradiated ground beef was inoculated with one E. coli control strain or with a four-strain cocktail of E. coli O157:H7 (ca. 105 CFU/g), formed into patties (30 to 45 g), and stored at the appropriate temperature. The numbers of the E. coli control strain decreased by 1.4 log10 CFU/g, and pathogen numbers declined 1.9 log10 CFU/g when patties were stored for 4 weeks at 2°C. When patties were stored at −2°C for 4 weeks, the numbers of the E. coli control strain and the serotype O157:H7 strains decreased 2.8 and 1.5 log10 CFU/g, respectively. Patties stored at 15°C for 4 h prior to storage at −2°C for 4 weeks resulted in 1.6 and 2.7 log10–CFU/g reduction in the numbers of E. coli and E. coli O157:H7, respectively. Storage of retail ground beef at 15°C for 4 h (tempering) did not result in increased numbers of colony forming units per gram, as determined with violet red bile, MRS lactobacilli, and plate-count agars. Frozen storage (−20°C) of ground-beef patties that had been inoculated with a single strain of E. coli resulted in approximately a 1 to 2 log10–CFU/g reduction in the numbers of the control strain and individual serotype O157:H7 strains after 1 year. There was no significant difference between the survival of the control strain and the O157:H7 strains, nor was there a difference between O157:H7 strains. These data demonstrate that tempering of ground-beef patties prior to low-temperature storage accelerated the decline in the numbers of E. coli O157:H7.


Sign in / Sign up

Export Citation Format

Share Document