scholarly journals One-pot production of butyl butyrate from glucose using a cognate “diamond-shaped” E. coli consortium

Author(s):  
Jean Paul Sinumvayo ◽  
Chunhua Zhao ◽  
Guoxia Liu ◽  
Yin Li ◽  
Yanping Zhang

Abstract Esters are widely used in plastics, textile fibers, and general petrochemicals. Usually, esters are produced via chemical synthesis or enzymatic processes from the corresponding alcohols and acids. However, the fermentative production of esters from alcohols and/or acids has recently also become feasible. Here we report a cognate microbial consortium capable of producing butyl butyrate. This microbial consortium consists of two engineered butyrate- and butanol-producing E. coli strains with nearly identical genetic background. The pathways for the synthesis of butyrate and butanol from butyryl-CoA in the respective E. coli strains, together with a lipase-catalyzed esterification reaction, created a “diamond-shaped” consortium. The concentration of butyrate and butanol in the fermentation vessel could be altered by adjusting the inoculation ratios of each E. coli strain in the consortium. After optimization, the consortium produced 7.2 g/L butyl butyrate with a yield of 0.12 g/g glucose without the exogenous addition of butanol or butyrate. To our best knowledge, this is the highest titer and yield of butyl butyrate produced by E. coli reported to date. This study thus provides a new way for the biotechnological production of esters.

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Jean Paul Sinumvayo ◽  
Chunhua Zhao ◽  
Guoxia Liu ◽  
Yin Li ◽  
Yanping Zhang

AbstractEsters are widely used in plastics, textile fibers, and general petrochemicals. Usually, esters are produced via chemical synthesis or enzymatic processes from the corresponding alcohols and acids. However, the fermentative production of esters from alcohols and/or acids has recently also become feasible. Here we report a cognate microbial consortium capable of producing butyl butyrate. This microbial consortium consists of two engineered butyrate- and butanol-producing E. coli strains with nearly identical genetic background. The pathways for the synthesis of butyrate and butanol from butyryl-CoA in the respective E. coli strains, together with a lipase-catalyzed esterification reaction, created a “diamond-shaped” consortium. The concentration of butyrate and butanol in the fermentation vessel could be altered by adjusting the inoculation ratios of each E. coli strain in the consortium. After optimization, the consortium produced 7.2 g/L butyl butyrate with a yield of 0.12 g/g glucose without the exogenous addition of butanol or butyrate. To our best knowledge, this is the highest titer and yield of butyl butyrate produced by E. coli reported to date. This study thus provides a new way for the biotechnological production of esters.


2020 ◽  
Author(s):  
Jean Paul Sinumvayo ◽  
Chunhua Zhao ◽  
Guoxia Liu ◽  
Yanping Zhang ◽  
Yin Li

Abstract Esters are widely used in plastic, texture, fiber, and petroleum industries. Usually, esters are produced from chemical synthesis or enzymatic processes from the corresponding alcohols and acids. Recently, fermentation production of esters was developed with supplementation of precursors (either alcohol or acid, or both at once). Here using butyl butyrate as an example, we demonstrated that we can use a microbial consortium developed from two engineered butyrate- and butanol-producing E. coli strains for the production of ester, with the assistance of exogenously added lipase. The synthesizing pathways for both precursors and the lipase-based esterification reaction created a “diamond-shaped” consortium. The concentration of the precursors for ester biosynthesis could be altered by adjusting the ratio of the inoculum of each E. coli strain in the consortium. Upon appropriate optimization, the consortium produced 7.2 g/L butyl butyrate without the exogenous addition of butanol or butyrate, which is the highest titer of butyl butyrate produced by E. coli reported to date. This study thus provides a new way for the biotechnological production of esters.


2009 ◽  
Vol 75 (8) ◽  
pp. 2423-2432 ◽  
Author(s):  
Hyeon Cheol Lee ◽  
Jin Ha Kim ◽  
Jin Sook Kim ◽  
Wonhee Jang ◽  
Sang Yong Kim

ABSTRACT Thymidine is an important precursor in the production of various antiviral drugs, including azidothymidine for the treatment of AIDS. Since thymidine-containing nucleotides are synthesized only by the de novo pathway during DNA synthesis, it is not easy to produce a large amount of thymidine biologically. In order to develop a host strain to produce thymidine, thymidine phosphorylase, thymidine kinase, and uridine phosphorylase genes were deleted from an Escherichia coli BL21 strain to develop BLdtu. Since the genes coding for the enzymes related to the nucleotide salvage pathway were disrupted, BLdtu was unable to utilize thymidine or thymine, and thymidine degradation activity was completely abrogated. We additionally expressed T4 thymidylate synthase, T4 nucleotide diphosphate reductase, bacteriophage PBS2 TMP phosphohydrolase, E. coli dCTP deaminase, and E. coli uridine kinase in the BLdtu strain to develop a thymidine-producing strain (BLdtu24). BLdtu24 produced 649.3 mg liter−1 of thymidine in a 7-liter batch fermenter for 24 h, and neither thymine nor uridine was detected. However, the dUTP/dTTP ratio was increased in BLdtu24, which could lead to increased double-strand breakages and eventually to cell deaths during fermentation. To enhance thymidine production and to prevent cell deaths during fermentation, we disrupted a gene (encoding uracil-DNA N-glycosylase) involved in DNA excision repair to suppress the consumption of dTTP and developed BLdtug24. Compared with the thymidine production in BLdtu24, the thymidine production in BLdtug24 was increased by ∼1.2-fold (740.3 mg liter−1). Here, we show that a thymidine-producing strain with a relatively high yield can be developed using a metabolic engineering approach.


2015 ◽  
Vol 100 (3) ◽  
pp. 1241-1251 ◽  
Author(s):  
Lingfeng Zhu ◽  
Xiangchen Guan ◽  
Nengzhong Xie ◽  
Limin Wang ◽  
Bo Yu ◽  
...  

Materials ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 1673 ◽  
Author(s):  
Abdul Mukheem ◽  
Kasturi Muthoosamy ◽  
Sivakumar Manickam ◽  
Kumar Sudesh ◽  
Syed Shahabuddin ◽  
...  

Many wounds are unresponsive to currently available treatment techniques and therefore there is an immense need to explore suitable materials, including biomaterials, which could be considered as the crucial factor to accelerate the healing cascade. In this study, we fabricated polyhydroxyalkanoate-based antibacterial mats via an electrospinning technique. One-pot green synthesized graphene-decorated silver nanoparticles (GAg) were incorporated into the fibres of poly-3 hydroxybutarate-co-12 mol.% hydroxyhexanoate (P3HB-co-12 mol.% HHx), a co-polymer of the polyhydroxyalkanoate (PHA) family which is highly biocompatible, biodegradable, and flexible in nature. The synthesized PHA/GAg biomaterial has been characterized by field emission scanning electron microscopy (FESEM), elemental mapping, thermogravimetric analysis (TGA), UV-visible spectroscopy (UV-vis), and Fourier transform infrared spectroscopy (FTIR). An in vitro antibacterial analysis was performed to investigate the efficacy of PHA/GAg against gram-positive Staphylococcus aureus (S. aureus) strain 12,600 ATCC and gram-negative Escherichia coli (E. coli) strain 8739 ATCC. The results indicated that the PHA/GAg demonstrated significant reduction of S. aureus and E. coli as compared to bare PHA or PHA- reduced graphene oxide (rGO) in 2 h of time. The p value (p < 0.05) was obtained by using a two-sample t-test distribution.


2016 ◽  
Vol 18 (15) ◽  
pp. 4189-4197 ◽  
Author(s):  
Marijke Frederix ◽  
Florence Mingardon ◽  
Matthew Hu ◽  
Ning Sun ◽  
Todd Pray ◽  
...  

Integrating an ionic liquid tolerant E. coli strain with an ionic liquid tolerant cellulase for bioconversion of pretreated hydrolysate and cellulose to a bio jet-fuel precursor.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Jean Paul Sinumvayo ◽  
Yin Li ◽  
Yanping Zhang

AbstractButyl butyrate (BB) is an important chemical with versatile applications in beverage, food and cosmetics industries. Since chemical synthesis of BB may cause adverse impacts on the environment, biotechnology is an emerging alternative approach for microbial esters biosynthesis. BB can be synthesized by using a single Clostridium strain natively producing butanol or butyrate, with exogenously supplemented butyrate or butanol, in the presence of lipase. Recently, E. coli strains have been engineered to produce BB, but the titer and yield remained very low. This review highlighted a new trend of developing cognate microbial consortium for BB production and associated challenges, and end up with new prospects for further improvement for microbial BB biosynthesis.


2011 ◽  
Vol 183-185 ◽  
pp. 971-974
Author(s):  
Min Wang ◽  
Xiao Hong Sun ◽  
Tian Lei Qiu ◽  
Mei Lin Han ◽  
Xu Ming Wang

Harpin protein was produced by a recombinant E. coli BL21(DE3)/pET30a(+)hrpNEcc in a 1-ton fermentor, and acute oral toxicity test in rats and guinea pig skin sensitization test for Harpin protein were carried out in order to determine its toxicity. The experimental results show that the protein production is up to 4.78 g/L after 16-18 h of fermentation, and the production cost of this protein is 1.75 yuan/g. Harpin protein produced by the recombinant E. coli strain is non-toxic (LD50>5000mg/kg) and has a low allergenicity (rate of sensitization is 0%). The results obtained in this study lay the foundation of the industrial manufacturing and the application on agriculture for Harpin protein.


1997 ◽  
Vol 35 (11-12) ◽  
pp. 351-357 ◽  
Author(s):  
R. Rothmaier ◽  
A. Weidenmann ◽  
K. Botzenhart

Isolates (50) of E. coli obtained from liquid manure (20 bovine, 20 porcine) were genotyped using random amplified polymorphic DNA (RAPD). Typing revealed 9 and 14 different strains in bovine and porcine liquid manure respectively with no strains in common. One porcine strain, showing a simple RAPD pattern, was subcultured and spread on a test field (1.5l/m2 at 1010 cfu/l) in a drinking water protection zone with loamy to sandy sediments in the Donauried area, Baden-Wurttemberg. Soil samples and groundwaters were collected at monthly intervals October 1994 – June 1995 during which 114 E. coli isolates were recovered. The first occurrence and maximum concentration of E. coli in soil samples taken from more than 20cm depth was in January 1995, declining rapidly with depth and time. All isolates from soil and only one from groundwater showed the RAPD pattern of the spread E. coli strain. The results could not demonstrate a severe negative impact of the spreading of liquid manure on the bacteriological quality of the groundwater in the given geological situation. The distinct strain patterns found in different kinds of liquid manure suggest that genotyping of E. coli by RAPD may be an adequate tool for tracing sources of faecal contamination.


Sign in / Sign up

Export Citation Format

Share Document