scholarly journals Quantification of occlusions influencing the tree stem curve retrieving from single-scan terrestrial laser scanning data

2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Peng Wan ◽  
Tiejun Wang ◽  
Wuming Zhang ◽  
Xinlian Liang ◽  
Andrew K. Skidmore ◽  
...  

Abstract Background The stem curve of standing trees is an essential parameter for accurate estimation of stem volume. This study aims to directly quantify the occlusions within the single-scan terrestrial laser scanning (TLS) data, evaluate its correlation with the accuracy of the retrieved stem curves, and subsequently, to assess the capacity of single-scan TLS to estimate stem curves. Methods We proposed an index, occlusion rate, to quantify the occlusion level in TLS data. We then analyzed three influencing factors for the occlusion rate: the percentage of basal area near the scanning center, the scanning distance and the source of occlusions. Finally, we evaluated the effects of occlusions on stem curve estimates from single-scan TLS data. Results The results showed that the correlations between the occlusion rate and the stem curve estimation accuracies were strong (r = 0.60–0.83), so was the correlations between the occlusion rate and its influencing factors (r = 0.84–0.99). It also showed that the occlusions from tree stems were the main factor of the low detection rate of stems, while the non-stem components mainly influenced the completeness of the retrieved stem curves. Conclusions Our study demonstrates that the occlusions significantly affect the accuracy of stem curve retrieval from the single-scan TLS data in a typical-size (32 m × 32 m) forest plot. However, the single-scan mode has the capacity to accurately estimate the stem curve in a small forest plot (< 10 m × 10 m) or a plot with a lower occlusion rate, such as less than 35% in our tested datasets. The findings from this study are useful for guiding the practice of retrieving forest parameters using single-scan TLS data.

2015 ◽  
Vol 77 (26) ◽  
Author(s):  
Nurliyana Izzati Ishak ◽  
Md Afif Abu Bakar ◽  
Muhammad Zulkarnain Abdul Rahman ◽  
Abd Wahid Rasib ◽  
Kasturi Devi Kanniah ◽  
...  

This paper presents a novel non-destructive approach for individual tree stem and branch biomass estimation using terrestrial laser scanning data. The study area is located at the Royal Belum Reserved Forest area, Gerik, Perak. Each forest plot was designed with a circular shape and contains several scanning locations to ensure good visibility of each tree. Unique tree signage was located on trees with diameter at breast height (DBH) of 10cm and above.  Extractions of individual trees were done manually and the matching process with the field collected tree properties were relied on the tree signage and tree location as collected by total station. Individual tree stems were reconstructed based on cylinder models from which the total stem volume was calculated. Biomass of individual tree stems was calculated by multiplying stem volume with specific wood density. Biomass of individual was estimated using similar concept of tree stem with the volume estimated from alpha-hull shape. The root mean squared errors (RMSE) of estimated biomass are 50.22kg and 27.20kg for stem and branch respectively. 


Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 835
Author(s):  
Ville Luoma ◽  
Tuomas Yrttimaa ◽  
Ville Kankare ◽  
Ninni Saarinen ◽  
Jiri Pyörälä ◽  
...  

Tree growth is a multidimensional process that is affected by several factors. There is a continuous demand for improved information on tree growth and the ecological traits controlling it. This study aims at providing new approaches to improve ecological understanding of tree growth by the means of terrestrial laser scanning (TLS). Changes in tree stem form and stem volume allocation were investigated during a five-year monitoring period. In total, a selection of attributes from 736 trees from 37 sample plots representing different forest structures were extracted from taper curves derived from two-date TLS point clouds. The results of this study showed the capability of point cloud-based methods in detecting changes in the stem form and volume allocation. In addition, the results showed a significant difference between different forest structures in how relative stem volume and logwood volume increased during the monitoring period. Along with contributing to providing more accurate information for monitoring purposes in general, the findings of this study showed the ability and many possibilities of point cloud-based method to characterize changes in living organisms in particular, which further promote the feasibility of using point clouds as an observation method also in ecological studies.


Author(s):  
Cornelis Stal ◽  
Jeffrey Verbeurgt ◽  
Lars De Sloover ◽  
Alain De Wulf

Abstract Sustainable forest management heavily relies on the accurate estimation of tree parameters. Among others, the diameter at breast height (DBH) is important for extracting the volume and mass of an individual tree. For systematically estimating the volume of entire plots, airborne laser scanning (ALS) data are used. The estimation model is frequently calibrated using manual DBH measurements or static terrestrial laser scans (STLS) of sample plots. Although reliable, this method is time-consuming, which greatly hampers its use. Here, a handheld mobile terrestrial laser scanning (HMTLS) was demonstrated to be a useful alternative technique to precisely and efficiently calculate DBH. Different data acquisition techniques were applied at a sample plot, then the resulting parameters were comparatively analysed. The calculated DBH values were comparable to the manual measurements for HMTLS, STLS, and ALS data sets. Given the comparability of the extracted parameters, with a reduced point density of HTMLS compared to STLS data, and the reasonable increase of performance, with a reduction of acquisition time with a factor of 5 compared to conventional STLS techniques and a factor of 3 compared to manual measurements, HMTLS is considered a useful alternative technique.


2020 ◽  
Author(s):  
Tuomas Yrttimaa ◽  
Ninni Saarinen ◽  
Ville Luoma ◽  
Topi Tanhuanpää ◽  
Ville Kankare ◽  
...  

The feasibility of terrestrial laser scanning (TLS) in characterizing standing trees has been frequently investigated, while less effort has been put in quantifying downed dead wood using TLS. To advance dead wood characterization using TLS, we collected TLS point clouds and downed dead wood information from 20 sample plots (32 m x 32 m in size) located in southern Finland. This data set can be used in developing new algorithms for downed dead wood detection and characterization as well as for understanding spatial patterns of downed dead wood in boreal forests.


2020 ◽  
Author(s):  
Tuomas Yrttimaa ◽  
Ninni Saarinen ◽  
Ville Luoma ◽  
Topi Tanhuanpää ◽  
Ville Kankare ◽  
...  

Dead wood is a key forest structural component for maintaining biodiversity and storing carbon. Despite its important role in a forest ecosystem, quantifying dead wood alongside standing trees has often neglected when investigating the feasibility of terrestrial laser scanning (TLS) in forest inventories. The objective of this study was therefore to develop an automatic method for detecting and characterizing downed dead wood.


Author(s):  
Tuomas Yrttimaa ◽  
Ville Luoma ◽  
Ninni Saarinen ◽  
Ville Kankare ◽  
Samuli Junttila ◽  
...  

Terrestrial laser scanning (TLS) has been adopted as a feasible technique to digitize trees and forest stands, providing accurate information on tree and forest structural attributes. However, there is limited understanding on how a variety of forest structural changes can be quantified using TLS in boreal forest conditions. In this study, we assessed the accuracy and feasibility of TLS in quantifying changes in the structure of boreal forests. We collected TLS data and field reference from 37 sample plots in 2014 (T1) and 2019 (T2). Tree stems typically have planar, vertical, and cylindrical characteristics in a point cloud, and thus we applied surface normal filtering, point cloud clustering, and RANSAC-cylinder filtering to identify these geometries and to characterize trees and forest stands at both time points. The results strengthened the existing knowledge that TLS has the capacity to characterize trees and forest stands in space and showed that TLS could characterize structural changes in time in boreal forest conditions. Root-mean-square-errors (RMSEs) in the estimates for changes in the tree attributes were 0.99-1.22 cm for diameter at breast height (&Delta;dbh), 44.14-55.49 cm2 for basal area (&Delta;g), and 1.91-4.85 m for tree height (&Delta;h). In general, tree attributes were estimated more accurately for Scots pine trees, followed by Norway spruce and broadleaved trees. At the forest stand level, an RMSE of 0.60-1.13 cm was recorded for changes in basal area-weighted mean diameter (&Delta;Dg), 0.81-2.26 m for changes in basal area-weighted mean height (&Delta;Hg), 1.40-2.34 m2/ha for changes in mean basal area (&Delta;G), and 74-193 n/ha for changes in the number of trees per hectare (&Delta;TPH). The plot-level accuracy was higher in Scots pine-dominated sample plots than in Norway spruce-dominated and mixed-species sample plots. TLS-derived tree and forest structural attributes at time points T1 and T2 differed significantly from each other (p &lt; 0.05). If there was an increase or decrease in dbh, g, h, height of the crown base, crown ratio, Dg, Hg, or G recorded in the field, a similar outcome was achieved by using TLS. Our results provided new information on the feasibility of TLS for the purposes of forest ecosystem growth monitoring.


2019 ◽  
Vol 11 (2) ◽  
pp. 211 ◽  
Author(s):  
Wuming Zhang ◽  
Peng Wan ◽  
Tiejun Wang ◽  
Shangshu Cai ◽  
Yiming Chen ◽  
...  

Tree stem detection is a key step toward retrieving detailed stem attributes from terrestrial laser scanning (TLS) data. Various point-based methods have been proposed for the stem point extraction at both individual tree and plot levels. The main limitation of the point-based methods is their high computing demand when dealing with plot-level TLS data. Although segment-based methods can reduce the computational burden and uncertainties of point cloud classification, its application is largely limited to urban scenes due to the complexity of the algorithm, as well as the conditions of natural forests. Here we propose a novel and simple segment-based method for efficient stem detection at the plot level, which is based on the curvature feature of the points and connected component segmentation. We tested our method using a public TLS dataset with six forest plots that were collected for the international TLS benchmarking project in Evo, Finland. Results showed that the mean accuracies of the stem point extraction were comparable to the state-of-art methods (>95%). The accuracies of the stem mappings were also comparable to the methods tested in the international TLS benchmarking project. Additionally, our method was applicable to a wide range of stem forms. In short, the proposed method is accurate and simple; it is a sensible solution for the stem detection of standing trees using TLS data.


2020 ◽  
Vol 66 (6) ◽  
pp. 737-746
Author(s):  
Francesco Chianucci ◽  
Nicola Puletti ◽  
Mirko Grotti ◽  
Carlotta Ferrara ◽  
Achille Giorcelli ◽  
...  

Abstract Accurate and frequently updated tree volume estimates are required for poplar plantations, which are characterized by fast growth rate and short rotation. In this study, we tested the potential of terrestrial laser scanning (TLS) as a reliable method for developing nondestructive tree volume allometries in poplar plantations. The trial was conducted in Italy, where 4- to 10-year-old hybrid plantations were sampled to develop tree crown volume allometry in leaf-on conditions, tree stem volume, and height-diameter allometries in leaf-off conditions. We tested one-entry models based on diameter and two-entry models based on both diameter and height. Model performance was assessed by residual analysis. Results indicate that TLS can provide accurate models of tree stem and crown volume, with percentage of root-mean-square error of about 20 percent and 15 percent, respectively. The inclusion of height does not bring relevant improvement in the models, so that only diameter can be used to predict tree stem and crown volume. The TLS-measured stem volume estimates agreed with an available formula derived from harvesting. We concluded that TLS is a reliable method for developing nondestructive volume allometries in poplar plantations and holds great potential to enhance conventional tree inventory and monitoring. Study Implications: Terrestrial laser scanning (TLS) is a technique that allows nondestructive measurement of the three-dimensional structure of a tree with high precision and low cost. The ability of TLS to measure both tree crown volume and tree position can be effective to test optimal spacing requirements and also to test innovative schemes such as mixed or polycyclic poplar plantations. The spatially explicit nature of TLS measurements allows better integration with different remotely sensed sensors, which can be used in combination with TLS, enabling a multiscale assessment of poplar plantation structure with different levels of detail, enhancing conventional tree inventory and supporting effective management strategies.


Sign in / Sign up

Export Citation Format

Share Document