scholarly journals An integrated FEM-ANN model for laser bending process with inverse estimation of absorptivity

Author(s):  
Ravi Kant ◽  
Shrikrishna N. Joshi ◽  
Uday S. Dixit
2011 ◽  
Vol 48 (8) ◽  
pp. 081408
Author(s):  
姜敏凤 Jiang Minfeng ◽  
陶茂科 Tao Maoke ◽  
刘会霞 Liu Huixia ◽  
李品 Lin Pin ◽  
张成 Zhang Cheng ◽  
...  

2010 ◽  
Vol 431-432 ◽  
pp. 118-121
Author(s):  
Peng Zhang ◽  
Hong Wei Liu

Laser bending process of sheet metals is a highly flexible forming technique. Simulate model of laser bending process was established by dimension analysis, and the control model of laser bending was achieved with the regression of swatch datum. It was shown that dimension analysis was an effective method in simulating the complex laser bending process, and the control model, which came from non-dimension group datum, was a high-accuracy model in predictive analysis of bending angle.


Author(s):  
Alfonso Paoletti

Laser bending is a promising technique utilised in order to deform metal sheets that offers the advantage of requiring no hard tooling and no external forces, thus reducing cost and increasing flexibility. Laser forming involves a complex interaction of many process parameters, ranging from those connected with the irradiation of the laser beam to those regarding the thermal and mechanical properties of the workpiece material. The present work is focused on the laser bending of AISI 304 steel sheets by using of a diode laser. The influence of process parameters, such as the power of laser beam and the scanning speed as well as the metal sheet thickness on the bending angle has been taken into account. The investigation has also analysed the effect of rolling direction of the metal sheets and the conditions of cooling on the bending process.


2011 ◽  
Vol 460-461 ◽  
pp. 798-801 ◽  
Author(s):  
Nan Hai Hao ◽  
Yu Ling Gai

Laser tube bending is a spring-back-free noncontact forming method that has received considerable attention in recent years. Compared to mechanical bending, no hard tooling, dies, or external force is used in laser bending, thus the cost is greatly reduced for small-batch production and prototyping. Some quality issues, such as cross sectional distortion and intrados protrusion exist in laser bending and have growing tendency when the tube’s wall being thinner. This paper investigates the effects of process parameters on the deformation of thin wall tube through numerical simulations and experiments. The dimensions of the tube analyzed are 32 mm in outer diameter and 0.48mm in wall thickness. A three-dimensional transient thermo-mechanical analysis using the finite element method is carried out to simulate the laser bending process with some results validated by experiments. The effects of process parameters on the deformation of thin wall tubes are discussed in detail.


2010 ◽  
Vol 148-149 ◽  
pp. 590-594
Author(s):  
Yan Jin Guan ◽  
Hong Mei Zhang ◽  
Sheng Sun ◽  
Guo Qun Zhao

Laser bending process of tubes is a new flexible forming process without rigid tools and external forces. The tube is formed by internal thermal stress induced by laser irradiation. The process simulation of laser bending of tubes is realized numerically. When the other parameters remain invariable, the laser bending angle augments with the increase of the laser power. The laser bending angle decreases with the increase of the scanning velocity. Meanwhile, the bending angle varies with the diameter of the laser spot. The angle begins to decrease when the laser spot diameter get to an optimum value. The bending angle enlarges if the scanning wrap angle augments. The bending angle is largest when the scanning wrap angle is 180°. When the scanning wrap angle is over 180°, the bending angle decreases with the increase of the scanning wrap angle. The relationship between the number of scans and the bending angle is about in direct ratio. The bending angle induced by the first irradiated time is the largest.


Sign in / Sign up

Export Citation Format

Share Document