An Experimental Study on Bending Process of AISI 304 Steel Sheets by using Diode Laser Forming

Author(s):  
Alfonso Paoletti

Laser bending is a promising technique utilised in order to deform metal sheets that offers the advantage of requiring no hard tooling and no external forces, thus reducing cost and increasing flexibility. Laser forming involves a complex interaction of many process parameters, ranging from those connected with the irradiation of the laser beam to those regarding the thermal and mechanical properties of the workpiece material. The present work is focused on the laser bending of AISI 304 steel sheets by using of a diode laser. The influence of process parameters, such as the power of laser beam and the scanning speed as well as the metal sheet thickness on the bending angle has been taken into account. The investigation has also analysed the effect of rolling direction of the metal sheets and the conditions of cooling on the bending process.

2012 ◽  
Vol 44 (2) ◽  
pp. 303-309 ◽  
Author(s):  
B.S. Yilbas ◽  
A.F.M. Arif ◽  
B.J. Abdul Aleem

Author(s):  
Paramasivan Kalvettukaran ◽  
Sandip Das ◽  
Sundar Marimuthu ◽  
Dipten Misra

The laser bending process, also called the laser forming process, consists of irradiating the surface of a sheet or a plate by means of a moving laser beam with a predefined scanning strategy to generate the desired shape through thermally induced residual stress. This chapter presents the mechanisms of a laser bending process and the technological aspects concerning laser v-bending of rectangular AISI 304 plates for full plates and plates with a central cutout at its middle to highlight the process fundamentals and how processing affects the final bending angle of the workpieces. Laser bending involving plates with a cutout will have numerous applications for car bodies, such as front and rear panels where bending is required to be performed on panels with cutout geometries. To investigate the effects of shape and size of the cutout on temperature distribution, stress distribution, and final bending angle, different shapes such as circular, ellipse, rectangular, and square, as well as different dimensions of cutouts have been chosen.


2021 ◽  
Vol 26 ◽  
Author(s):  
Deisi Vieira ◽  
Jose Eduardo May ◽  
Graziela da Silva Savonov ◽  
Rafael Humberto Mota de Siqueira ◽  
Milton Sérgio Fernandes de Lima

2018 ◽  
Vol 24 (8) ◽  
pp. 1288-1295 ◽  
Author(s):  
Thiemo Valentin Fieger ◽  
Maximilian Ferdinand Sattler ◽  
Gerd Witt

Purpose This paper aims to identify issues with joining selective laser melting (SLM) steels with conventional cold rolled steels through remote laser beam welding. Design/methodology/approach A novel approach for substituting conventional cold rolled metal sheets with SLM metal sheets, made of 316L and 18-Ni 300, is presented. The characteristics of the interaction of wrought and SLM materials are described, and joining benchmark parameters are presented and compared to known existing joining results. Finally, the joints are assessed in line with automotive specifications. This research also addresses the importance of joining technologies for the implementation of SLM as a full-fledged manufacturing technology for the automotive industry. Findings New parameter ranges for laser beam welding of SLM steels are defined. Research limitations/implications This research is limited to the examined steels and the used machines, parameters and equipment. Practical implications The presented benchmark parameters are expected to be useful for designers, product developers and machine operators. Originality/value Little knowledge is available about the behavior of SLM materials and their suitability for assembly processes. Novel information about SLM steels and their interaction with conventionally produced steel sheets is presented.


2011 ◽  
Vol 460-461 ◽  
pp. 798-801 ◽  
Author(s):  
Nan Hai Hao ◽  
Yu Ling Gai

Laser tube bending is a spring-back-free noncontact forming method that has received considerable attention in recent years. Compared to mechanical bending, no hard tooling, dies, or external force is used in laser bending, thus the cost is greatly reduced for small-batch production and prototyping. Some quality issues, such as cross sectional distortion and intrados protrusion exist in laser bending and have growing tendency when the tube’s wall being thinner. This paper investigates the effects of process parameters on the deformation of thin wall tube through numerical simulations and experiments. The dimensions of the tube analyzed are 32 mm in outer diameter and 0.48mm in wall thickness. A three-dimensional transient thermo-mechanical analysis using the finite element method is carried out to simulate the laser bending process with some results validated by experiments. The effects of process parameters on the deformation of thin wall tubes are discussed in detail.


Sign in / Sign up

Export Citation Format

Share Document