scholarly journals Widefield imaging of retinal and choroidal tumors

Author(s):  
Natalia F. Callaway ◽  
Prithvi Mruthyunjaya

Abstract Background Wide-field imaging plays an increasingly important role in ocular oncology clinics. The purpose of this review is to describe the commonly used wide-field imaging devices and review conditions seen in ocular oncology clinic that underwent wide-field imaging as part of the multimodal evaluation. Summary of review Wide-field or wide-angle imaging is defined as greater than 50° field of view. Modern devices can reach far beyond this reporting fields of view up to 267°, when utilizing montage features, with increasingly impressive resolution. Wide-field imaging modalities include fundus photography, fluorescein angiography (FA), fundus autofluorescence (FAF), indocyanine angiography (ICG), spectral domain optical coherence tomography (SD-OCT), and recently wide-field OCT Angiography (OCTA). These imaging modalities are increasingly prevalent in practice. The wide-field systems include laser, optical, and lens based systems that are contact or non-contact lens systems each with its own benefits and drawbacks. The purpose of this review is to discuss commonly used wide-field imaging modalities for retinal and choroidal tumors and demonstrate the use of various widefield imaging modalities in select ocular oncology cases. Conclusions Clinical examination remains the gold standard for the evaluation of choroidal and retinal tumors. Wide-field imaging plays an important role in ocular oncology for initial documentation, surgical planning, determining the relationship of the tumor to adjacent ocular structures, following tumor size after treatment, and monitoring for recurrence.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Satoru Kanda ◽  
Takumi Hara ◽  
Ryosuke Fujino ◽  
Keiko Azuma ◽  
Hirotsugu Soga ◽  
...  

AbstractThis study aimed to investigate the relationship between autofluorescence (AF) signal measured with ultra-wide field imaging and visual functions in patients with cone-rod dystrophy (CORD). A retrospective chart review was performed for CORD patients. We performed the visual field test and fundus autofluorescence (FAF) measurement and visualized retinal structures with optical coherence tomography (OCT) on the same day. Using binarised FAF images, we identified a low FAF area ratio (LFAR: low FAF/30°). Relationships between age and logMAR visual acuity (VA), central retinal thickness (CRT), central choroidal thickness (CCT), mean deviation (MD) value, and LFAR were investigated. Thirty-seven eyes of 21 CORD patients (8 men and 13 women) were enrolled. The mean patient age was 49.8 years. LogMAR VA and MD were 0.52 ± 0.47 and − 17.91 ± 10.59 dB, respectively. There was a significant relationship between logMAR VA and MD (p = 0.001). LogMAR VA significantly correlated with CRT (p = 0.006) but not with other parameters. Conversely, univariate analysis suggested a significant relationship between MD and LFAR (p = 0.001). In the multivariate analysis, LFAR was significantly associated with MD (p = 0.002). In conclusion, it is useful to measure the low FAF area in patients with CORD. The AF measurement reflects the visual field deterioration but not VA in CORD.


2021 ◽  
Vol 10 (21) ◽  
pp. 4916
Author(s):  
Barthelemy Poignet ◽  
Philippe Bonnin ◽  
Julien Gaudric ◽  
Ismael Chehaibou ◽  
Mathieu Vautier ◽  
...  

(1) Background: Takayasu arteritis (TA) is a chronic inflammatory large-vessel vasculitis. Ultra-wide-field imaging allows describing the retinal lesions in these patients and correlating them with vascular supra-aortic stenosis. (2) Methods: In total, 54 eyes of 27 patients diagnosed with TA were included, and a complete ophthalmological examination was performed, including UWF color fundus photography (UWF-CFP), fluorescein angiography (UWF-FA), and computed tomography angiography measuring supra-aortic stenosis. Eleven patients underwent Doppler ultrasound imaging assessing the blood flow velocity (BFV) in the central retinal artery (CRA). (3) Results: Microaneurysms were detected in 18.5% of eyes on fundus examination, in 24.4% of eyes on UWF-CFP, and in 94.4% of eyes on UWF-FA. The number of microaneurysms significantly correlated with the presence of an ipsilateral supra-aortic stenosis (p = 0.026), the presence of hypertension (p = 0.0011), and the duration of the disease (p = 0.007). The number of microaneurysms per eye negatively correlated with the BFV in the CRA (r = −0.61; p = 0.003). (4) Conclusions: UWF-FA improved the assessment of TA-associated retinal findings. The significant correlation between the number of microaneurysms and the BFV in the CRA gives new insight to our understanding of Takayasu retinopathy. The total number of microaneurysms could be used as an interesting prognostic factor for TA.


2015 ◽  
Vol 08 (02) ◽  
pp. 125 ◽  
Author(s):  
Esther Lee Kim ◽  
Andrew A Moshfeghi ◽  
◽  

Retinal imaging serves as a critical adjunct to the diagnosis, monitoring, and treatment of numerous ocular diseases. In particular, wide-field retinal imaging is quickly moving to the forefront in imaging the posterior segment. While conventional fundus imaging captures 30 to 50° field of view in a single capture, significant advances have been made in the past 2 decades to increase the viewing angle, speed, and accuracy of fundus photography, such that a single-field capture is now up to 200°. Moreover, multiple imaging modalities, including color fundus photography, fluorescein angiography, and autofluorescence, are now available a single wide-field imaging platform. This breadth of functionality makes wide-field imaging especially useful in peripheral retinal vascular diseases, such as diabetic retinopathy, posterior uveitis, and retinopathy of prematurity. This review aims to provide a historical perspective on wide-field retinal imaging, highlight the imaging platforms currently available, discuss the advantages and disadvantages of wide-field versus conventional fundus imaging, summarize the current clinical applications of wide-field retinal imaging, and provide an outlook for its future implications.


Author(s):  
Akio Oishi ◽  
Manabu Miyata ◽  
Shogo Numa ◽  
Yuki Otsuka ◽  
Maho Oishi ◽  
...  

Abstract Background Inherited retinal degeneration (IRD) refers to a heterogenous group of progressive diseases that cause death of photoreceptor cells and subsequent vision loss. These diseases often affect the peripheral retina, objective evaluation of which has been difficult until recently. Fundus autofluorescence (FAF) is a non-invasive retinal imaging technique that depicts the distribution of intrinsic fluorophores in the retina. The primary source of retinal autofluorescence is lipofuscin, which is contained in the retinal pigment epithelium (RPE). Excessive accumulation of lipofuscin and a window defect attributable to loss of photoreceptor pigment result in increased FAF whereas loss of the RPE results in decreased FAF. These changes can be seen during the course of IRD. Mainbody While conventional modalities are limited in their angle of view, recent technologic advances, known as wide-field and ultra-widefield FAF imaging, have enabled visualization of the far peripheral retina. Although clinical application of this technique in patients with IRD is still in its infancy, some studies have already indicated its usefulness. For example, an area with decreased FAF correlates well with a visual field defect in an eye with retinitis pigmentosa (RP) or cone-rod dystrophy. An abnormal FAF pattern may help in the diagnosis of IRD and associated diseases. In addition, female carriers of X-linked RP and female choroideremia show characteristic appearance. Conversely, absence of abnormal FAF despite severe retinal degeneration helps differentiation of cancer-associated retinopathy. Conclusion This paper reviews the principles of FAF, wide-field imaging, and findings in specific diseases. Wide-field imaging, particularly wide-field FAF, will provide further information for the characteristics, prognosis, and pathogenesis of IRD.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Martin Schmidt ◽  
Adam C. Hundahl ◽  
Henrik Flyvbjerg ◽  
Rodolphe Marie ◽  
Kim I. Mortensen

AbstractUntil very recently, super-resolution localization and tracking of fluorescent particles used camera-based wide-field imaging with uniform illumination. Then it was demonstrated that structured illuminations encode additional localization information in images. The first demonstration of this uses scanning and hence suffers from limited throughput. This limitation was mitigated by fusing camera-based localization with wide-field structured illumination. Current implementations, however, use effectively only half the localization information that they encode in images. Here we demonstrate how all of this information may be exploited by careful calibration of the structured illumination. Our approach achieves maximal resolution for given structured illumination, has a simple data analysis, and applies to any structured illumination in principle. We demonstrate this with an only slightly modified wide-field microscope. Our protocol should boost the emerging field of high-precision localization with structured illumination.


2021 ◽  
Vol 2 (2) ◽  
pp. 100542
Author(s):  
Taiga Takahashi ◽  
Hong Zhang ◽  
Kohei Otomo ◽  
Yosuke Okamura ◽  
Tomomi Nemoto

1998 ◽  
Vol 11 (1) ◽  
pp. 492-492
Author(s):  
D. MacCagni ◽  
O. Le Fèvre ◽  
G. Vettolani ◽  
D. Mancini ◽  
J.P. Picat ◽  
...  

Large and deep spectroscopic samples of galaxies are essential to study galaxies and large scale structure evolution out to look-back times ~ 10% the current age of the vmiverse. Keeping this scientific and observational goal in mind, we designed and are presently building two wide-field imaging spectrographs to be installed at the Nasmyth foci of the ESO-VLT Unit Telescopes 3 and 4.


2018 ◽  
Vol 114 (3) ◽  
pp. 504a-505a
Author(s):  
Mohammed Mahamdeh ◽  
Steve Simmert ◽  
Anna Łuchniak ◽  
Erik Schäffer ◽  
Jonathon Howard

Sign in / Sign up

Export Citation Format

Share Document