scholarly journals Correction to: Real-time prediction of short-timescale fluctuations in cognitive workload

Author(s):  
Udo Boehm ◽  
Dora Matzke ◽  
Matthew Gretton ◽  
Spencer Castro ◽  
Joel Cooper ◽  
...  
2019 ◽  
Author(s):  
Udo Boehm ◽  
Dora Matzke ◽  
Matthew Benjamin Gretton ◽  
Spencer Castro ◽  
Joel Cooper ◽  
...  

Human operators often experience large fluctuations in cognitive workload that can lead to sub-optimal performance, ranging from overload to neglect. Help from automated support systems could potentially address this issue, but to do so the system would ideally need to be aware of real-time changes in operators’ cognitive workload, so it can provide help in times of peak demand and take advantage of troughs to elicit operator engagement. We used the ISO standard Detection Response Task (DRT) to measure cognitive workload approximately every 4 seconds in a demanding task requiring monitoring and refuelling of a fleet of unmanned aerial vehicles (UAVs). We showed that the DRT provided a valid measure that can detect changes in workload due to changes in the number of UAVs. We used a cross-validation analysis to assess whether measures related to task performance immediately preceding the DRT could be used to predict detection performance as a proxy for cognitive workload. Although the simple occurrence of task events had weak predictive ability, composite measures that tapped operators’ situational awareness with respect to fuel levels were much more effective. We conclude that real-time prediction of operators’ cognitive workload shows promise as an avenue for improved human-automation teaming.


2012 ◽  
Author(s):  
J. D. Doyle ◽  
R. M. Hodur ◽  
S. Chen ◽  
H. Jin ◽  
Y. Jin ◽  
...  

2021 ◽  
Author(s):  
Yanfei Guan ◽  
S. V. Shree Sowndarya ◽  
Liliana C. Gallegos ◽  
Peter C. St. John ◽  
Robert S. Paton

From quantum chemical and experimental NMR data, a 3D graph neural network, CASCADE, has been developed to predict carbon and proton chemical shifts. Stereoisomers and conformers of organic molecules can be correctly distinguished.


2021 ◽  
pp. 0309524X2199826
Author(s):  
Guowei Cai ◽  
Yuqing Yang ◽  
Chao Pan ◽  
Dian Wang ◽  
Fengjiao Yu ◽  
...  

Multi-step real-time prediction based on the spatial correlation of wind speed is a research hotspot for large-scale wind power grid integration, and this paper proposes a multi-location multi-step wind speed combination prediction method based on the spatial correlation of wind speed. The correlation coefficients were determined by gray relational analysis for each turbine in the wind farm. Based on this, timing-control spatial association optimization is used for optimization and scheduling, obtaining spatial information on the typical turbine and its neighborhood information. This spatial information is reconstructed to improve the efficiency of spatial feature extraction. The reconstructed spatio-temporal information is input into a convolutional neural network with memory cells. Spatial feature extraction and multi-step real-time prediction are carried out, avoiding the problem of missing information affecting prediction accuracy. The method is innovative in terms of both efficiency and accuracy, and the prediction accuracy and generalization ability of the proposed method is verified by predicting wind speed and wind power for different wind farms.


Sign in / Sign up

Export Citation Format

Share Document