scholarly journals Wide area measurements based fault detection and location method for transmission lines

Author(s):  
Wen Fan ◽  
Yuan Liao
Author(s):  
Congshan Li ◽  
Ping He ◽  
Feng Wang ◽  
Cunxiang Yang ◽  
Yukun Tao ◽  
...  

Background: A novel fault location method of HVDC transmission line based on a concentric relaxation principle is proposed in this paper. Methods: Due to the different position of fault, the instantaneous energy measured from rectifier and inverter are different, and the ratio k between them is the relationship to the fault location d. Through the analysis of amplitude-frequency characteristics, we found that the wave attenuation characteristic of low frequency in the traveling wave is stable, and the amplitude of energy is larger, so we get the instantaneous energy ratio by using the low-frequency data. By using the method of wavelet packet decomposition, the voltage traveling wave signal was decomposed. Results: Finally, calculate the value k. By using the data fitting, the relative function of k and d can be got, that is the fault location function. Conclusion: After an exhaustive evaluation process considering different fault locations, fault resistances, and noise on the unipolar DC transmission system, four-machine two-area AC/DC parallel system, and an actual complex grid, the method presented here showed a very accurate and robust behavior.


2017 ◽  
Vol 53 (3) ◽  
pp. 1789-1798 ◽  
Author(s):  
Xiaodong Liang ◽  
Scott A. Wallace ◽  
Duc Nguyen

Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 2066 ◽  
Author(s):  
Shimin Xue ◽  
Junchi Lu ◽  
Chong Liu ◽  
Yabing Sun ◽  
Baibing Liu ◽  
...  

Accurate and reliable fault location method for alternating current (AC) transmission lines is essential to the fault recovery. MMC-based converter brings exclusive non-linear characteristics to AC networks under single-phase-to-ground faults, thus influencing the performance of the fault location method. Fault characteristics are related to the control strategies of the converter. However, the existing fault location methods do not take the control strategies into account, with further study being required to solve this problem. The influence of the control strategies to the fault compound sequence network is analyzed in this paper first. Then, a unique boundary condition that the fault voltage and negative-sequence fault current merely meet the direct proportion linear relationship at the fault point, is derived. Based on these, a unary linear regression analysis is performed, and the fault can be located according to the minimum residual sum function principle. The effectiveness of the proposed method is verified by PSCAD/EMTDC simulation platform. A large number of simulation results are used to verify the advantages on sampling frequency, fault resistance, and fault distance. More importantly, it provides a higher ranging precision and has extensive applicability.


2020 ◽  
Author(s):  
Gustavo A. Cunha ◽  
Felipe V. Lopes ◽  
Tiago H. Honorato

Traveling wave-based fault location has attracted more and more attention from industries worldwide. This theory allowed the implementation of functions in order to increase the reliability of the obtained fault location results. Among existing functions, the classical one-terminal method requires the detection of the wave reflected from the fault, which is still considered a challenging task. A commercial relay was released with a function able to identify these reflected waves by evaluating patterns and weighted hypotheses, identifying the wavefront most likely to be the one re ected from the fault. However, as this function is embedded into a relay, it is not possible to change the method settings. Thus, this paper presents a validation of this function which is implemented externally to the relay. Besides, its application is extended for transmission lines to which the relay can not be applied, such as huge HVDC lines.


Author(s):  
Nwoke G. O.

Abstract: Transmission line fault detection is an important aspect of monitoring the health of a power plant since it indicates when suspected faults could lead to catastrophic equipment failure. This research looks at how to detect generator and transmission line failures early and investigates fault detection methods using Artificial Neural Network approaches. Monitoring generator voltages and currents, as well as transmission line performance metrics, is a key monitoring criterion in big power systems. Failures result in system downtime, equipment damage, and a high danger to the power system's integrity, as well as a negative impact on the network's operability and dependability. As a result, from a simulation standpoint, this study looks at fault detection on the Trans Amadi Industrial Layout lines. In the proposed approach, one end's three phase currents and voltages are used as inputs. For the examination of each of the three stages involved in the process, a feed forward neural network with a back propagation algorithm has been used for defect detection and classification. To validate the neural network selection, a detailed analysis with varied numbers of hidden layers was carried out. Between transmission lines and power customers, electrical breakdowns have always been a source of contention. This dissertation discusses the use of Artificial Neural Networks to detect defects in transmission lines. The ANN is used to model and anticipate the occurrence of transmission line faults, as well as classify them based on their transient characteristics. The results revealed that, with proper issue setup and training, the ANN can properly discover and classify defects. The method's adaptability is tested by simulating various defects with various parameters. The proposed method can be applied to the power system's transmission and distribution networks. The MATLAB environment is used for numerous simulations and signal analysis. The study's main contribution is the use of artificial neural networks to detect transmission line faults. Keywords: Faults and Revenue Losses


Sign in / Sign up

Export Citation Format

Share Document