scholarly journals A Novel Single-Terminal Fault Location Method for AC Transmission Lines in a MMC-HVDC-Based AC/DC Hybrid System

Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 2066 ◽  
Author(s):  
Shimin Xue ◽  
Junchi Lu ◽  
Chong Liu ◽  
Yabing Sun ◽  
Baibing Liu ◽  
...  

Accurate and reliable fault location method for alternating current (AC) transmission lines is essential to the fault recovery. MMC-based converter brings exclusive non-linear characteristics to AC networks under single-phase-to-ground faults, thus influencing the performance of the fault location method. Fault characteristics are related to the control strategies of the converter. However, the existing fault location methods do not take the control strategies into account, with further study being required to solve this problem. The influence of the control strategies to the fault compound sequence network is analyzed in this paper first. Then, a unique boundary condition that the fault voltage and negative-sequence fault current merely meet the direct proportion linear relationship at the fault point, is derived. Based on these, a unary linear regression analysis is performed, and the fault can be located according to the minimum residual sum function principle. The effectiveness of the proposed method is verified by PSCAD/EMTDC simulation platform. A large number of simulation results are used to verify the advantages on sampling frequency, fault resistance, and fault distance. More importantly, it provides a higher ranging precision and has extensive applicability.

2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Huibin Jia

The fault generated transient traveling waves are wide band signals which cover the whole frequency range. When the frequency characteristic of line parameters is considered, different frequency components of traveling wave will have different attenuation values and wave velocities, which is defined as the dispersion effect of traveling wave. Because of the dispersion effect, the rise or fall time of the wavefront becomes longer, which decreases the singularity of traveling wave and makes it difficult to determine the arrival time and velocity of traveling wave. Furthermore, the dispersion effect seriously affects the accuracy and reliability of fault location. In this paper, a novel double-ended fault location method has been proposed with compensating the dispersion effect of traveling wave in wavelet domain. From the propagation theory of traveling wave, a correction function is established within a certain limit band to compensate the dispersion effect of traveling wave. Based on the determined arrival time and velocity of traveling wave, the fault distance can be calculated precisely by utilizing the proposed method. The simulation experiments have been carried out in ATP/EMTP software, and simulation results demonstrate that, compared with the traditional traveling-wave fault location methods, the proposed method can significantly improve the accuracy of fault location. Moreover, the proposed method is insensitive to different fault conditions, and it is adaptive to both transposed and untransposed transmission lines well.


2014 ◽  
Vol 15 (5) ◽  
pp. 449-456
Author(s):  
Wanjing Xiu ◽  
Yuan Liao

Abstract This paper presents a novel fault location method for transmission lines. The proposed method extends an existing method to locate faults by employing voltage and current measurements at one bus, which can be the bus of the faulted line or be far away from the faulted line. The method is applicable if a loop exists that encloses the faulted line, and the bus, of which the voltage is used, and the branch, of which the current is used. The during-fault positive-sequence bus impedance matrix is derived. Then superimposed voltages and currents due to the fault are expressed as a function of fault location and related transfer and driving point impedances. Consequently, the fault location can be evaluated using the obtained measurements. The distributed parameter line model is adopted to consider the shunt capacitances of the line. The proposed method is independent of fault resistance and fault type. Simulation studies have been carried out based on a 27-bus power system, and promising results have been achieved.


Author(s):  
Congshan Li ◽  
Ping He ◽  
Feng Wang ◽  
Cunxiang Yang ◽  
Yukun Tao ◽  
...  

Background: A novel fault location method of HVDC transmission line based on a concentric relaxation principle is proposed in this paper. Methods: Due to the different position of fault, the instantaneous energy measured from rectifier and inverter are different, and the ratio k between them is the relationship to the fault location d. Through the analysis of amplitude-frequency characteristics, we found that the wave attenuation characteristic of low frequency in the traveling wave is stable, and the amplitude of energy is larger, so we get the instantaneous energy ratio by using the low-frequency data. By using the method of wavelet packet decomposition, the voltage traveling wave signal was decomposed. Results: Finally, calculate the value k. By using the data fitting, the relative function of k and d can be got, that is the fault location function. Conclusion: After an exhaustive evaluation process considering different fault locations, fault resistances, and noise on the unipolar DC transmission system, four-machine two-area AC/DC parallel system, and an actual complex grid, the method presented here showed a very accurate and robust behavior.


2020 ◽  
Author(s):  
Gustavo A. Cunha ◽  
Felipe V. Lopes ◽  
Tiago H. Honorato

Traveling wave-based fault location has attracted more and more attention from industries worldwide. This theory allowed the implementation of functions in order to increase the reliability of the obtained fault location results. Among existing functions, the classical one-terminal method requires the detection of the wave reflected from the fault, which is still considered a challenging task. A commercial relay was released with a function able to identify these reflected waves by evaluating patterns and weighted hypotheses, identifying the wavefront most likely to be the one re ected from the fault. However, as this function is embedded into a relay, it is not possible to change the method settings. Thus, this paper presents a validation of this function which is implemented externally to the relay. Besides, its application is extended for transmission lines to which the relay can not be applied, such as huge HVDC lines.


Author(s):  
Yadi XIE ◽  
Baina HE ◽  
Lemiao WANG ◽  
Renzhuo JIANG ◽  
Yuyang ZHOU ◽  
...  

Abstract With the continuous expansion of the scale of power system, corridor resources of overhead transmission lines tend to be saturated in China, making AC/DC erection on the same tower a trend in future development. The AC/DC coupling effect will cause DC line to generate secondary arc current at the point of failure when transmission line fails, which affects the DC restart. On account of the mechanism of generating secondary arc current by AC/DC lines erected on the same tower, this paper uses PSCAD to establish simulation model for AC/DC erected on the same tower. And the effects of different fault locations, lengths of coupling sections, and different transposition modes of AC lines on the secondary arc current and recovery voltage of AC and DC lines are studied. The results show that secondary arc current on DC line is greatly affected by fault location and length of coupling line, and using different transposition modes of AC lines can reduce secondary arc current on the DC lines effectively. According to Yunguang UHV DC restart time sequence, setting the restart time sequence can increase the first restart deionization time to ensure the stable operation of the system.


2014 ◽  
Vol 556-562 ◽  
pp. 2723-2727 ◽  
Author(s):  
Lu Hua Xing ◽  
Qing Chen ◽  
Bing Lei Xue

A fault location method for HVDC (High Voltage Direct Current) transmission lines is proposed in this paper, using voltages and currents measured at two terminals of dc lines in time domain. Fault traveling waves propagate from the fault point to both terminals along the faulted line. The position that the traveling wave head arrives at some moment after the fault can be used to calculate the fault location. To determine the arrival positions of traveling wave head at each time indirectly, propagation characteristic curves of traveling wave heads at local and the remote terminals are calculated with distribution currents using the stationary wavelet transform. The accuracy of fault location will not be affected by transition resistance and fault position. Simulation results show that the presented fault location method can achieve quick and accurate fault location on the whole line under probable operation modes of a bipolar HVDC transmission system.


Sign in / Sign up

Export Citation Format

Share Document