scholarly journals Potential impact of climate change on the species richness of subalpine plant species in the mountain national parks of South Korea

2018 ◽  
Vol 42 (1) ◽  
Author(s):  
Pradeep Adhikari ◽  
Man-Seok Shin ◽  
Ja-Young Jeon ◽  
Hyun Woo Kim ◽  
Seungbum Hong ◽  
...  
2021 ◽  
Vol 45 (1) ◽  
Author(s):  
Sookyung Shin ◽  
Jung-Hyun Kim ◽  
Ji-Hee Dang ◽  
In-Soon Seo ◽  
Byoung Yoon Lee

AbstractThe climate is changing rapidly, and this may pose a major threat to global biodiversity. One of the most distinctive consequences of climate change is the poleward and/or upward shift of species distribution ranges associated with increasing temperatures, resulting in a change of species composition and community structure in the forest ecosystems. The Baekdudaegan mountain range connects most forests from the lowland to the subalpine zone in South Korea and is therefore recognized as one of the most important biodiversity hotspots. This study was conducted to understand the distribution range of vascular plants along elevational gradients through field surveys in the six national parks of the Baekdudaegan mountain range. We identified the upper and lower distribution limits of a total of 873 taxa of vascular plants with 117 families, 418 genera, 793 species, 14 subspecies, 62 varieties, two forms, and two hybrids. A total of 12 conifers were recorded along the elevational gradient. The distribution ranges of Abies koreana, Picea jezoensis, Pinus pumila, and Thuja koraiensis were limited to over 1000 m above sea level. We also identified 21 broad-leaved trees in the subalpine zone. A total of 45 Korean endemic plant species were observed, and of these, 15 taxa (including Aconitum chiisanense and Hanabusaya asiatica) showed a narrow distribution range in the subalpine zone. Our study provides valuable information on the current elevational distribution ranges of vascular plants in the six national parks of South Korea, which could serve as a baseline for vertical shifts under future climate change.


2020 ◽  
Author(s):  
Matteo Pecchi ◽  
Maurizio Marchi ◽  
Marco Moriondo ◽  
Giovanni Forzieri ◽  
Marco Ammoniaci ◽  
...  

Abstract Background: Forests provide a range of ecosystem services essential for the human wellbeing and their ability is influenced by climate background and further connected to forest management strategies. Italy is a well-known biodiversity hotspot but an uncertainty assessment of the potential impact of climate change is still missing in this country. The aim of this paper is model the potential impact of climate change on 19 tree species occurring across the Italian forests using a species distribution modelling approach, six different Global Circulation Models (GCMs) and one Regional Climate Models (RCMs) for 2050s under an intermediate forcing scenario (RCP 4.5). Results: While no sensible variation in the spatial distribution of the total forested area has been predicted with some tree species gaining space and covering the spatial contractions of others, results showed substantial differences between each species and different climate models. The analyses reported an unchanged amount of total land suitability to forest growth in mountain areas while smaller values were predicted for valleys and floodplains than high-elevation areas. Pure woods were predicted as the most influenced when compared with mixed stands which are characterized by a greater species richness and therefore a supposed higher level of biodiversity and resilience to climate change threatens. Pure softwood stands (e.g. Pinus, Abies) were more sensitive than hardwoods (e.g. Fagus, Quercus), probably due to their artificial origin which established pure stands with tree species generally more prone to admixture with others in (semi)-natural ecosystems.Conclusions: Forest management could play a fundamental role to reduce the potential impact of climate change on forest ecosystems. Silvicultural practices should be aimed at increasing the species richness and favouring hardwoods currently growing as dominating species under conifers canopy, stimulating the natural regeneration, gene flow and supporting (spatial) migration processes.


2021 ◽  
Vol 132 ◽  
pp. 108288
Author(s):  
Ying Sun ◽  
Yuan Sun ◽  
Shuran Yao ◽  
Muhammad Adnan Akram ◽  
Weigang Hu ◽  
...  

Heliyon ◽  
2021 ◽  
pp. e07401
Author(s):  
Sajib Mandal ◽  
Md. Sirajul Islam ◽  
Md. Haider Ali Biswas ◽  
Sonia Akter

2021 ◽  
Vol 23 (2-3) ◽  
pp. 115-132
Author(s):  
Łukasz Kułaga

Abstract The increase in sea levels, as a result of climate change in territorial aspect will have a potential impact on two major issues – maritime zones and land territory. The latter goes into the heart of the theory of the state in international law as it requires us to confront the problem of complete and permanent disappearance of a State territory. When studying these processes, one should take into account the fundamental lack of appropriate precedents and analogies in international law, especially in the context of the extinction of the state, which could be used for guidance in this respect. The article analyses sea level rise impact on baselines and agreed maritime boundaries (in particular taking into account fundamental change of circumstances rule). Furthermore, the issue of submergence of the entire territory of a State is discussed taking into account the presumption of statehood, past examples of extinction of states and the importance of recognition in this respect.


Sign in / Sign up

Export Citation Format

Share Document