scholarly journals Long-fibre reinforced polymer composites by 3D printing: influence of nature of reinforcement and processing parameters on mechanical performance

2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Francis Dantas ◽  
Kevin Couling ◽  
Gregory J. Gibbons

Abstract The aim of this study was to identify the effect of material type (matrix and reinforcement) and process parameters, on the mechanical properties of 3D Printed long-fibre reinforced polymer composites manufactured using a commercial 3D Printer (Mark Two). The effect of matrix material (Onyx or polyamide), reinforcement type (Carbon, Kevlar®, and HSHT glass), volume of reinforcement, and reinforcement lay-up orientation on both Ultimate Tensile Strength (UTS) and Flexural Modulus were investigated. For Onyx, carbon fibre reinforcement offered the largest increase in both UTS and Flexural Modulus over unreinforced material (1228 ± 19% and 1114 ± 6% respectively). Kevlar® and HSHT also provided improvements but these were less significant. Similarly, for Nylon, the UTS and Flexural Modulus were increased by 1431 ± 56% and 1924 ± 5% by the addition of carbon fibre reinforcement. Statistical analysis indicated that changing the number of layers of reinforcement had the largest impact on both UTS and Flexural Strength, and all parameters were statistically significant.

2020 ◽  
Author(s):  
Francis Dantas ◽  
Kevin Couling ◽  
Greg Gibbons

Abstract The aim of this study was to identify the effect of material type (matrix and reinforcement) and process parameters, on the mechanical properties of 3D Printed long-fibre reinforced polymer composites manufactured using a commercial 3D Printer (Mark Two). The effect of matrix material (Onyx or polyamide), reinforcement type (Carbon, Kevlar®, and HSHT glass), volume of reinforcement, and reinforcement lay-up orientation on both Ultimate Tensile Strength (UTS) and Flexural Modulus were investigated. For Onyx, carbon fibre reinforcement offered the largest increase in both UTS and Flexural Modulus over unreinforced material (1,228±19 % and 1,114±6 % respectively). Kevlar® and HSHT also provided improvements but these were less significant. Similarly, for Nylon, the UTS and Flexural Modulus were increased by 1,431±56 % and 1,924±5 % by the addition of carbon fibre reinforcement. Statistical analysis indicated that changing the number of layers of reinforcement had the largest impact on both UTS and Flexural Strength, and all parameters were statistically significant.


2020 ◽  
Author(s):  
Francis Dantas ◽  
Greg Gibbons

Abstract Additive Manufacturing (AM), also known as 3D Printing, has been around for more than 2 decades and has recently gained importance for use in direct manufacturing. The quantified physical properties of materials are required by design engineers to inform and validate their designs, and this is no less true for AM that it is for traditional manufacturing methods. Recent innovation in AM has seen the emergence of long-fibre composite AM technologies, such as the Mark Two (Markforged Inc, USA) system, enabling the manufacture of thermoplastic polymer composites with long-fibre reinforcement. To date though, the mechanical response of the materials with respect to build parameter variation is little understood. In this project, selected mechanical properties (ultimate tensile strength – UTS and flexural modulus) of samples processed using the Mark Two printer were studied. The effect of the reinforcement type (Carbon, Kevlar®, and HSHT glass), amount of reinforcement, reinforcement lay-up orientation, and the base matrix material (Onyx and polyamide) on these properties were assessed using accepted standard test methods. For Onyx, the UTS and Flexural Modulus was improved by a maximum of 244 ± 10 MPa (1228 ± 19%) and 14.2 ± 0.3 GPa (1114 ± 6%) (Carbon), by 143 ± 1 MPa (721 ± 18%) and 7.1 ± 0.3 GPa (560 ± 6%) (Kevlar®) and 209 ± 4 MPa (1049 ± 19%) and 6.0 ± 0.1 GPa (469 ± 6%) (HSHT glass). For Nylon the UTS and Flexural Modulus was improved by 235 ± 4 MPa (1431 ± 56%) and 14.1 ± 0.2 GPa (1924 ± 5%) (Carbon), 143 ± 3 MPa (867 ± 56%) and 6.79 ± 0.08 GPa (927 ± 5%) (Kevlar®) and 204 ± 2 MPa (1250 ± 55%) and 5.73 ± 0.09 GPa (782 ± 5%) (HSHT glass). A regression and ANOVA analysis for UTS indicated that the number of layers of reinforcement had the largest impact on UTS (F = 11,483 P < 0.005), with the second most important parameter being the type of reinforcement (F = 855 P < 0.005). The parameter effects for all four parameters were significant (P ≤ 0.05). For the Flexural Modulus, the number of layers of reinforcement was again the most significant parameter (F = 2733 P < 0.005), with the second most important parameter again being the type of reinforcement (F = 1339 P < 0.005). Again, the parameter effects for all four parameters were significant (P ≤ 0.05), although the influence of base material had much less significant effect on determining the Flexural Modulus than it did in controlling UTS.


Polymers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 2136
Author(s):  
Sharizal Ahmad Sobri ◽  
Robert Heinemann ◽  
David Whitehead

Carbon fibre reinforced polymer composites (CFRPs) can be costly to manufacture, but they are typically used anywhere a high strength-to-weight ratio and a high steadiness (rigidity) are needed in many industrial applications, particularly in aerospace. Drilling composites with a laser tends to be a feasible method since one of the composite phases is often in the form of a polymer, and polymers in general have a very high absorption coefficient for infrared radiation. The feasibility of sequential laser–mechanical drilling for a thick CFRP is discussed in this article. A 1 kW fibre laser was chosen as a pre-drilling instrument (or initial stage), and mechanical drilling was the final step. The sequential drilling method dropped the overall thrust and torque by an average of 61%, which greatly increased the productivity and reduced the mechanical stress on the cutting tool while also increasing the lifespan of the bit. The sequential drilling (i.e., laser 8 mm and mechanical 8 mm) for both drill bits (i.e., 2- and 3-flute uncoated tungsten carbide) and the laser pre-drilling techniques has demonstrated the highest delamination factor (SFDSR) ratios. A new laser–mechanical sequence drilling technique is thus established, assessed, and tested when thick CFRP composites are drilled.


Author(s):  
Kaushal Arrawatia ◽  
Kedar Narayan Bairwa ◽  
Raj Kumar

Polymer composites have outstanding qualities such as high strength, flexibility, stiffness, and lightweight. Currently, research is being performed to develop innovative polymer composites that may be used in many operational situations and contain a variety of fibre and filler combinations. Banana fibre has low density compared to glass fibre and it is a lingo-cellulosic fibre having relatively good mechanical properties compared to glass fibre. Because of their outstanding qualities, banana fibre reinforced polymer composites are now widely used in various industries. The primary goal of this study is to determine the effect of the wt.% of banana fibre, the wt.% of SiC, and the wt.% of Al2O3 in banana fibre reinforcement composites on the mechanical and physical properties of banana fibre reinforcement composites. Tensile strength and flexural strength of unfilled banana fibre epoxy composite increased with the increase in wt. of banana fibre from 0 wt.% to 12 wt.%. Further, an increase in wt.% banana fibre drop in mechanical property was observed. It has been concluded from the study that the variation in percentage weight of filler material with fixed amount (12 wt.%) of banana fibre affects the mechanical properties of filled banana reinforcement composites. Optimum mechanical properties were obtained for BHEC5 (72 wt.% Epoxy + Hardener, 12 wt.% banana fibre and 16 wt.% Al2O3).


Author(s):  
Santosh Kumar ◽  
KK Singh

Application of fibre-reinforced polymer composites has increased over the last two decades as compared to conventional materials. This improvement in the application of fibre-reinforced polymer composites is attributed to their unique material properties, such as high strength and stiffness-to-weight ratio, specific modulus and internal vibration damping. However, in most of the industrial applications, composite materials encounter tribological complications. Economic indicators and market dynamics suggested that the market for composite materials is booming and the dominant materials are carbon fibres, glass fibres and thermoset polymer (polyester resin) in resin segments. That is why tribological characteristics are crucial in designing carbon and glass-based fibre-reinforced polymer components. Owing to this importance, the study of tribological behaviour of fibre-reinforced polymer composite materials has expanded significantly. The present study has made an attempt to review the fundamental tribological applications and critical aspects of fibre-reinforced polymers, based on research work, which has been carried out over the past couple of decades. This work has primarily focused on the fibre-reinforced polymer composites, based on carbon and glass fibres with thermosets as the matrix material for probing into tribological behaviours. In the process, the focus has largely been on the most commonly occurring erosive and abrasive mode of wear process.


Sign in / Sign up

Export Citation Format

Share Document