scholarly journals Electrodeposition of nano-Cu, Ni and binary Ni/Cu into nano-porous AAO layer for high-efficiency black spectrally selective coating

2021 ◽  
Vol 45 (1) ◽  
Author(s):  
H. S. Hussein ◽  
M. F. Shaffei ◽  
Ahmed M. Awad Abouelata ◽  
Mona A. Abdel-Fatah

Abstract Background Anodic aluminum oxide (AAO) template is widespread due to its diverse metal nanostructures. Various solar selective black coatings on aluminum oxide template were investigated. Spectrally selective nano-coating of nickel, copper and nickel–copper on anodized aluminum was produced. Results The coatings were performed via electrodeposition and evaluated by measurement of coating thickness, hardness and optical properties. Also, these coatings were analyzed by scanning electron microscope, energy-dispersive X-ray spectroscopic and polarization studies in 3.5% NaCl solution. The anodized aluminum showed higher corrosion resistance (4.8284 KΩ) and lower corrosion rate (0.02189 mm/year). However, the electro-colored Al with Cu for 60 min showed the highest corrosion rate of 0.1942 mm/y, compared with other Al samples. The effect of anodizing time on the metal density and the optical efficiency of black copper coating was studied. Results The obtained solar panels exhibit low values of solar reflectance within the visible range and high solar absorption efficiency. These coatings are highly efficient and adequate for any solar system.

Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1557
Author(s):  
Farkhod Azimov ◽  
Jihee Kim ◽  
Seong Min Choi ◽  
Hyun Min Jung

α-Fe2O3, which is an attractive material for supercapacitor electrodes, has been studied to address the issue of low capacitance through structural development and complexation to maximize the use of surface pseudocapacitance. In this study, the limited performance of α-Fe2O3 was greatly improved by optimizing the nanotube structure of α-Fe2O3 and its combination with polyaniline (PANI). α-Fe2O3 nanotubes (α-NT) were fabricated in a form in which the thickness and inner diameter of the tube were controlled by Fe(CO)5 vapor deposition using anodized aluminum oxide as a template. PANI was combined with the prepared α-NT in two forms: PANI@α-NT-a enclosed inside and outside with PANI and PANI@α-NT-b containing PANI only on the inside. In contrast to α-NT, which showed a very low specific capacitance, these two composites showed significantly improved capacitances of 185 Fg−1 for PANI@α-NT-a and 62 Fg−1 for PANI@α-NT-b. In the electrochemical impedance spectroscopy analysis, it was observed that the resistance of charge transfer was minimized in PANI@α-NT-a, and the pseudocapacitance on the entire surface of the α-Fe2O3 nanotubes was utilized with high efficiency through binding and conductivity improvements by PANI. PANI@α-NT-a exhibited a capacitance retention of 36% even when the current density was increased 10-fold, and showed excellent stability of 90.1% over 3000 charge–discharge cycles. This approach of incorporating conducting polymers through well-controlled nanostructures suggests a solution to overcome the limitations of α-Fe2O3 electrode materials and improve performance.


Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 107
Author(s):  
Tao Zhan ◽  
En-Lin Hsiang ◽  
Kun Li ◽  
Shin-Tson Wu

We demonstrate a light efficient virtual reality (VR) near-eye display (NED) design based on a directional display panel and a diffractive deflection film (DDF). The DDF was essentially a high-efficiency Pancharatnam-Berry phase optical element made of liquid crystal polymer. The essence of this design is directing most of the display light into the eyebox. The proposed method is applicable for both catadioptric and dioptric VR lenses. A proof-of-concept experiment was conducted with off-the-shelf optical parts, where the light efficiency was enhanced by more than 2 times.


2010 ◽  
Vol 20 (18) ◽  
pp. 3099-3105 ◽  
Author(s):  
David J. Comstock ◽  
Steven T. Christensen ◽  
Jeffrey W. Elam ◽  
Michael J. Pellin ◽  
Mark C. Hersam

2016 ◽  
Vol 12 (3) ◽  
pp. 575-580 ◽  
Author(s):  
Jeong Su Park ◽  
Dalnim Moon ◽  
Jin-Seok Kim ◽  
Jin Seok Lee

Sign in / Sign up

Export Citation Format

Share Document