scholarly journals Identification of hydrovolcanism and its significance for hydrocarbon reservoir assessment: A review

2018 ◽  
Vol 7 (1) ◽  
Author(s):  
Ben-Zhong Xian ◽  
Yan-Xin He ◽  
Hua-Peng Niu ◽  
Jun-Hui Wang ◽  
Jian-Ping Liu ◽  
...  
Author(s):  
N. Chugunov ◽  
G. Shepelyov ◽  
M. Sternin

The complexity and interdisciplinary nature of modern problems are often coupled with uncertainty inherent to real-life situations. There is a wide class of real-world problems described by well-formulated quantitative models for which a decision maker (DM) has to deal with uncertainty in values of initial parameters for these models. A good example of such a problem is hydrocarbon reservoir assessment in the exploration stage, which requires the involvement and joint consideration of geological, petroleum engineering, and financial models of reservoir exploration. The consequences of some unreasonable decisions can lead to millions of dollars in loss to the companies as it happens in the oil business, where industry sources on investment decision analysis continue to report surprise values (outside the [P10;P90] range) far more than the 20% indicated by this interval (Welsh, Begg, Bratvold, & Lee, 2004).


PIERS Online ◽  
2007 ◽  
Vol 3 (8) ◽  
pp. 1334-1339
Author(s):  
Jingtian Tang ◽  
Weibin Luo

1989 ◽  
Author(s):  
M. Honarpour ◽  
M. Szpakiewicz ◽  
B. Sharma ◽  
Ming-Ming Chang ◽  
R. Schatzinger ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1513 ◽  
Author(s):  
Naser Golsanami ◽  
Xuepeng Zhang ◽  
Weichao Yan ◽  
Linjun Yu ◽  
Huaimin Dong ◽  
...  

Seismic data and nuclear magnetic resonance (NMR) data are two of the highly trustable kinds of information in hydrocarbon reservoir engineering. Reservoir fluids influence the elastic wave velocity and also determine the NMR response of the reservoir. The current study investigates different pore types, i.e., micro, meso, and macropores’ contribution to the elastic wave velocity using the laboratory NMR and elastic experiments on coal core samples under different fluid saturations. Once a meaningful relationship was observed in the lab, the idea was applied in the field scale and the NMR transverse relaxation time (T2) curves were synthesized artificially. This task was done by dividing the area under the T2 curve into eight porosity bins and estimating each bin’s value from the seismic attributes using neural networks (NN). Moreover, the functionality of two statistical ensembles, i.e., Bag and LSBoost, was investigated as an alternative tool to conventional estimation techniques of the petrophysical characteristics; and the results were compared with those from a deep learning network. Herein, NMR permeability was used as the estimation target and porosity was used as a benchmark to assess the reliability of the models. The final results indicated that by using the incremental porosity under the T2 curve, this curve could be synthesized using the seismic attributes. The results also proved the functionality of the selected statistical ensembles as reliable tools in the petrophysical characterization of the hydrocarbon reservoirs.


2015 ◽  
Vol 7 (1) ◽  
Author(s):  
László Molnár ◽  
Balázs Vásárhelyi ◽  
Tivadar M. Tóth ◽  
Félix Schubert

AbstractThe integrated evaluation of borecores from the Mezősas-Furta fractured metamorphic hydrocarbon reservoir suggests significantly distinct microstructural and rock mechanical features within the analysed fault rock samples. The statistical evaluation of the clast geometries revealed the dominantly cataclastic nature of the samples. Damage zone of the fault can be characterised by an extremely brittle nature and low uniaxial compressive strength, coupled with a predominately coarse fault breccia composition. In contrast, the microstructural manner of the increasing deformation coupled with higher uniaxial compressive strength, strain-hardening nature and low brittleness indicate a transitional interval between the weakly fragmented damage zone and strongly grinded fault core. Moreover, these attributes suggest this unit is mechanically the strongest part of the fault zone. Gougerich cataclasites mark the core zone of the fault, with their widespread plastic nature and locally pseudo-ductile microstructure. Strain localization tends to be strongly linked with the existence of fault gouge ribbons. The fault zone with ∼15 m total thickness can be defined as a significant migration pathway inside the fractured crystalline reservoir. Moreover, as a consequence of the distributed nature of the fault core, it may possibly have a key role in compartmentalisation of the local hydraulic system.


Sign in / Sign up

Export Citation Format

Share Document