scholarly journals A near-shore clastic-carbonate mixing mode in a continental rift basin (early Oligocene, eastern Shijiutuo Uplift, Bohai Bay Basin, China): sedimentology, reservoir characteristics and exploration practice

2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Xiao-Feng Du ◽  
Hao Liu ◽  
Xiao-Bo Huang ◽  
Zhang-Qiang Song ◽  
Wei Xu ◽  
...  

Abstract A comprehensive sedimentary and reservoir analysis was conducted based on seismic, well logging, core and relative test data, taking Members 1 and 2 of Shahejie Formation of the early Oligocene in the steep slope belt, eastern Shijiutuo Uplift (STU), Bohai Bay Basin (BBB) as a case. The study indicates that a near-shore mixed fan deposit formed in the study area and developed characteristics and pattern of a high-quality reservoir. The mixed clastic-carbonate rocks constitute Members 1 and 2 of Shahejie Formation which developed along the steep slope belt and is named as a near-shore mixed fan. The mixed fan of the study area is mainly composed of microfacies of proximal channel, mixed deposited channel, mixed clastic beach, mixed bioclastic (grain) beach, with vertical multi-stage superimposition feature, and basically a similar shape as modern near-shore fans. It constitutes a new depositional type developing in the steep slope belt of a characteristic and complex lacustrine rift basin in the study area. This mixed fan in the steep slope of eastern STU is controlled by comprehensive factors including tectonics, clastic material supply, climate, palaeogeomorphology and hydrodynamic conditions. The reservoir quality of Members 1 and 2 of Shahejie Formation of eastern STU is, however, actually controlled by the sedimentary environment and diagenesis processes. Coarse-grained mixed rocks of near-shore fans, rich in bioclastics, can form excellent reservoirs, characterized by resistance to compaction, easy to dissolution, little influenced by burial depth and high production of oil and gas, which enable them become key exploration targets of medium-deep strata of BBB. Analyses of high-quality reservoir, its controlling factors and the oil and gas exploration implications of the near-shore mixed fan developing in the study area give a deeper insight into discussions of the same type of mixed rocks of other lacustrine rift basins worldwide.

Sedimentology ◽  
2018 ◽  
Vol 65 (6) ◽  
pp. 2117-2148 ◽  
Author(s):  
Yingchang Cao ◽  
Yanzhong Wang ◽  
Jonathan Gordon Gluyas ◽  
Huimin Liu ◽  
Haining Liu ◽  
...  

Minerals ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 517
Author(s):  
Zehua Zhang ◽  
Hongliang Wang

Clarification of the source of the Eocene sediments filling the Huimin depression provides significant support for current and future oil and gas exploration in the Bohai Bay Basin, China. A comprehensive assessment of sediment provenance based on sandstone petrography, heavy mineral assemblages, seismic reflection data, and distribution of sandstone bodies of the Shahejie Formation (Es2) to the Dongying Formation (Ed) productive interval based on both its macroscopic and microscopic provenance aspects. This method of analysis has the advantages of easy data acquisition, high accuracy, strong flexibility, wide application range, and making the analysis of sedimentary provenances more systematic. Comprehensive analysis of the Huimin depression, Bohai Bay Basin has revealed further that the origin of the Eocene second member of the Shahejie Formation (Es2) to the Dongying Formation (Ed) provenance system was derived from the Linfanjia high, the Chengning uplift, and the Luxi uplift.


2021 ◽  
pp. 014459872110310
Author(s):  
Min Li ◽  
Xiongqi Pang ◽  
Guoyong Liu ◽  
Di Chen ◽  
Lingjian Meng ◽  
...  

The fine-grained rocks in the Paleogene Shahejie Formation in Nanpu Sag, Huanghua Depression, Bohai Bay Basin, are extremely important source rocks. These Paleogene rocks are mainly subdivided into organic-rich black shale and gray mudstone. The average total organic carbon contents of the shale and mudstone are 11.5 wt.% and 8.4 wt.%, respectively. The average hydrocarbon (HC)-generating potentials (which is equal to the sum of free hydrocarbons (S1) and potential hydrocarbons (S2)) of the shale and mudstone are 39.3 mg HC/g rock and 28.5 mg HC/g rock, respectively, with mean vitrinite reflectance values of 0.82% and 0.81%, respectively. The higher abundance of organic matter in the shale than in the mudstone is due mainly to paleoenvironmental differences. The chemical index of alteration values and Na/Al ratios reveal a warm and humid climate during shale deposition and a cold and dry climate during mudstone deposition. The biologically derived Ba and Ba/Al ratios indicate high productivity in both the shale and mudstone, with relatively low productivity in the shale. The shale formed in fresh to brackish water, whereas the mudstone was deposited in fresh water, with the former having a higher salinity. Compared with the shale, the mudstone underwent higher detrital input, exhibiting higher Si/Al and Ti/Al ratios. Shale deposition was more dysoxic than mudstone deposition. The organic matter enrichment of the shale sediments was controlled mainly by reducing conditions followed by moderate-to-high productivity, which was promoted by a warm and humid climate and salinity stratification. The organic matter enrichment of the mudstone was less than that of the shale and was controlled by relatively oxic conditions.


Sign in / Sign up

Export Citation Format

Share Document