scholarly journals Unified gas-kinetic wave-particle methods IV: multi-species gas mixture and plasma transport

2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Chang Liu ◽  
Kun Xu

AbstractIn this paper, we extend the unified gas-kinetic wave-particle (UGKWP) methods to the multi-species gas mixture and multiscale plasma transport. The construction of the scheme is based on the direct modeling on the mesh size and time step scales, and the local cell’s Knudsen number determines the flow physics. The proposed scheme has the multiscale and asymptotic complexity diminishing properties. The multiscale property means that according to the cell’s Knudsen number the scheme can capture the non-equilibrium flow physics when the cell size is on the kinetic mean free path scale, and preserve the asymptotic Euler, Navier-Stokes, and magnetohydrodynamics (MHD) when the cell size is on the hydrodynamic scale and is much larger than the particle mean free path. The asymptotic complexity diminishing property means that the total degrees of freedom of the scheme reduce automatically with the decreasing of the cell’s Knudsen number. In the continuum regime, the scheme automatically degenerates from a kinetic solver to a hydrodynamic solver. In the UGKWP, the evolution of microscopic velocity distribution is coupled with the evolution of macroscopic variables, and the particle evolution as well as the macroscopic fluxes is modeled from a time accumulating solution of kinetic scale particle transport and collision up to a time step scale. For plasma transport, the current scheme provides a smooth transition from particle-in-cell (PIC) method in the rarefied regime to the magnetohydrodynamic solver in the continuum regime. In the continuum limit, the cell size and time step of the UGKWP method are not restricted by the particle mean free path and mean collision time. In the highly magnetized regime, the cell size and time step are not restricted by the Debye length and plasma cyclotron period. The multiscale and asymptotic complexity diminishing properties of the scheme are verified by numerical tests in multiple flow regimes.

2020 ◽  
Author(s):  
Chang Liu ◽  
Kun Xu

Abstract In this paper, we extend the unified gas-kinetic wave-particle (UGKWP) method to the multi-species gas mixture and multiscale plasma transport. The construction of the scheme is based on the direct modeling on the mesh size and time step scales, and the local cell's Knudsen number determines the flow physics. The proposed scheme has the multiscale and asymptotic complexity diminishing properties. The multiscale property means that according to cell's Knudsen number the scheme can capture the non-equilibrium flow physics in the rarefied flow regime, and preserve the asymptotic Euler, Navier-Stokes, and magnetohydrodynamics limit in the continuum regime. The asymptotic complexity diminishing property means that the total degree of freedom of the scheme automatically decreases as cell's Knudsen number decreases. In the continuum regime, the scheme automatically degenerates from a kinetic solver to a hydrodynamic solver. In UGKWP, the evolution of microscopic velocity distribution is coupled with the evolution of macroscopic variables, and the particle evolution as well as the macroscopic fluxes are modeled from the time accumulating solution up to a time step scale from the kinetic model equation. For plasma transport, current scheme provides a smooth transition from particle in cell (PIC) method in the rarefied regime to the magnetohydrodynamic (MHD) solver in the continuum regime. In the continuum limit, the cell size and time step of the UGKWP method is not restricted to be less than the mean free path and mean collision time. In the highly magnetized regime, the cell size and time step are not restricted by the Debye length and plasma cyclotron period. The multiscale and asymptotic complexity diminishing properties of the scheme are verified by numerical tests in multiple flow regimes.


Author(s):  
P. Lopez ◽  
Y. Bayazitoglu

Lattice Boltzmann (LB) method models have been demonstrated to provide an accurate representation of the flow characteristics in rarefied flows. Conditions in such flows are characterized by the Knudsen number (Kn), defined as the ratio between the gas molecular Mean Free Path ( MFP, λ) and the device characteristic length (L). As the Knudsen number increases, the behavior of the flow near the walls is increasingly dominated by interactions between the gas molecules and the solid surface. Due to this, linear constitutive relations for shear stress and heat flux, which are assumed in the Navier-Stokes-Fourier (NSF) system of equations, are not valid within the Knudsen Layer (KL). Fig. 1 illustrates the characteristics of the velocity field within the Knudsen layer in a shear-driven flow. It is easily observed that although the NSF equations with slip flow boundary conditions (represented by dashed line) can predict the velocity profile in the bulk flow region, they fail to capture the flow characteristics inside the Knudsen layer. Slip flow boundary conditions have also been derived using the integral transform technique [1]. Various methods have been explored to extend the applicability of LB models to higher Knudsen number flows, including using higher order velocity sets, and using wall-distance functions to capture the effect of the walls on the mean free path by incorporating such functions on the determination of the local relaxation parameters. In this study, a high order velocity model which contains a two-dimensional, thirteen velocity direction set (e.g., D2Q13), as shown in Fig. 2, is used as the basis of the current LB model. The LB model consists of two independent distribution functions to simulate the density and temperature fields, while the Diffuse Scattering Boundary Condition (DSBC) method is used to simulate the fluid interaction with the walls. To further improve the characterization of transition flow conditions expected in nano-scale heat transfer, we explored the implementation of two wall-distance functions, derived recently based on an integrated form of a probability distribution function, to the high-order LB model. These functions are used to determine the effective mean free path values throughout the height of the micro/nano-channel, and the resulting effect is first normalized and then used to determine local relaxation times for both momentum and energy using a relationship based on the local Knudsen number. The two wall-distance functions are based on integral forms of 1) the classical probability distribution function, ψ(r) = λ0−1e−r/λ0, derived by Arlemark et al [2], in which λ0represents the reference gas mean free path, and 2) a Power-Law probability distribution function, derived by Dongari et al [3]. Thus, the probability that a molecule travels a distance between r and r+dr between two successive collisions is equal to ψ(r)dr. The general form of the integral of the two functions used can be described by ψ(r) = C − f(r), where f(r) represents the base function (exponential or Power Law), and C is set to 1 so that the probability that a molecule will travel a distance r+dr without a collision ranges from zero to 1. The performance of the present LB model coupled with the implementation of the two wall-distance functions is tested using two classical flow cases. The first case considered is that of isothermal, shear-driven Couette flow between two parallel, horizontal plates separated by a distance H, moving in opposite directions at a speed of U0. Fig. 3 shows the normalized velocity profiles across the micro-channel height for various Knudsen numbers in the transition flow regime based on our LB models as compared to data based on the Linearized Boltzmann equation [4]. The results show that our two LB models provide results that are in excellent agreement with the reference data up to the high end of the transition flow regime, with Knudsen numbers greater than 1. The second case is rarefied Fourier flow within horizontal, parallel plates, with the plates being stationary and set to a constant temperature (TTop > TBottom), and the Prandtl number is set to 0.67 to match the reference data based on the Direct Simulation Monte Carlo (DSMC) method [5]. Fig. 4 shows the normalized temperature profiles across the microchannel height for various Knudsen numbers in the slip/transition How regime. For the entire Knudsen number range studied, our two LB models provide temperature profiles that are in excellent agreement with the non-linear profile seen in the reference data. The results obtained show that the effective MFP relationship based on the exponential function improves the results obtained with the high order LB model for both shear-driven and Fourier flows up to Kn∼1. The results also show that the effective MFP relationship based on the Power Law distribution function greatly enhances the results obtained with the high order LB model for the two cases addressed, up to Kn∼3. In conclusion, the resulting LB models represent an effective tool in modeling non-equilibrium gas flows expected within micro/nano-scale devices.


Author(s):  
Zhengqiang Tang ◽  
Frank E. Talke

A numerical model for the simulation of slider vibrations in helium-air gas mixtures has been developed. The physical properties of the helium-air gas mixture, such as density, mean free path and viscosity, were determined to calculate the dynamic flying characteristics of a slider using the CMRR air bearing simulator. Frequency analysis shows that the helium percentage in the gas mixture can shift the second pitch mode of the slider to a higher frequency.


2021 ◽  
Vol 933 ◽  
Author(s):  
Satoshi Taguchi ◽  
Tetsuro Tsuji

The flow around a spinning sphere moving in a rarefied gas is considered in the following situation: (i) the translational velocity of the sphere is small (i.e. the Mach number is small); (ii) the Knudsen number, the ratio of the molecular mean free path to the sphere radius, is of the order of unity (the case with small Knudsen numbers is also discussed); and (iii) the ratio between the equatorial surface velocity and the translational velocity of the sphere is of the order of unity. The behaviour of the gas, particularly the transverse force acting on the sphere, is investigated through an asymptotic analysis of the Boltzmann equation for small Mach numbers. It is shown that the transverse force is expressed as $\boldsymbol{F}_L = {\rm \pi}\rho a^3 (\boldsymbol{\varOmega} \times \boldsymbol{v}) \bar{h}_L$ , where $\rho$ is the density of the surrounding gas, a is the radius of the sphere, $\boldsymbol {\varOmega }$ is its angular velocity, $\boldsymbol {v}$ is its velocity and $\bar {h}_L$ is a numerical factor that depends on the Knudsen number. Then, $\bar {h}_L$ is obtained numerically based on the Bhatnagar–Gross–Krook model of the Boltzmann equation for a wide range of Knudsen number. It is shown that $\bar {h}_L$ varies with the Knudsen number monotonically from 1 (the continuum limit) to $-\tfrac {2}{3}$ (the free molecular limit), vanishing at an intermediate Knudsen number. The present analysis is intended to clarify the transition of the transverse force, which is previously known to have different signs in the continuum and the free molecular limits.


1974 ◽  
Vol 65 ◽  
pp. 497-511
Author(s):  
L. Trafton

The first measurement of Neptune's quadrupole H2 lines is reported. The equivalent widths of the S(0) and S(1) lines of the (4–0) band are given along with the corresponding widths measured from comparison spectra of Uranus taken on the same nights. These are interpreted in terms of both an inhomogeneous atmosphere overlying a reflecting layer and a homogeneous, semi-infinite, scattering atmosphere. Only the scattering model proves to be consistent with Neptune's spectrum in this wavelength region. The H2 abundance along the scattering mean free path is found to be less than the value for Rayleigh scattering in pure H2. This result is interpreted in terms of the presence of H2, CH4 and at least one other gas, instead of the more conventional interpretation in terms of the presence of an aerosol mixed with H2. Weak features in the continuum were observed. Their widths and the strength of the H2 features indicate that H2 is more abundant than the sum of the remaining gases in these atmospheres.


1993 ◽  
Vol 248 ◽  
pp. 219-235 ◽  
Author(s):  
Dean C. Wadsworth ◽  
Daniel A. Erwin ◽  
E. Phillip Muntz

The transient motion that arises in a confined rarefied gas as a container wall is rapidly heated or cooled is simulated numerically. The Knudsen number based on nominal gas density and characteristic container dimension is varied from near-continuum to highly rarefied conditions. Solutions are generated with the direct simulation Monte Carlo method. Comparisons are made with finite-difference solutions of the Navier–Stokes equations, the limiting free-molecular values, and (continuum) results based on a small perturbation analysis. The wall heating and cooling scenarios considered induce relatively large acoustic disturbances in the gas, with characteristic flow speeds on the order of 20% of the local sound speed. Steady-state conditions are reached after on the order of 5 to 10 acoustic time units, here based on the initial speed of sound in the gas and the container dimension. As rarefaction increases, the initial gas response time is decreased. For the case of a rapid increase in wall temperature, transient rarefaction effects near the wall greatly alter gas response compared to the continuum predictions, even at relatively small nominal Knudsen number. For wall cooling, the continuum solution agrees well with direct simulation at that same Knudsen number. A local Knudsen number, based on the mean free path and the scale length of the temperature gradient, is found to be a more suitable indicator of transient rarefaction effects.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Zhaoli Guo ◽  
Kun Xu

AbstractMultiscale gas flows appear in many fields and have received particular attention in recent years. It is challenging to model and simulate such processes due to the large span of temporal and spatial scales. The discrete unified gas kinetic scheme (DUGKS) is a recently developed numerical approach for simulating multiscale flows based on kinetic models. The finite-volume DUGKS differs from the classical kinetic methods in the modeling of gas evolution and the reconstruction of interface flux. Particularly, the distribution function at a cell interface is reconstructed from the characteristic solution of the kinetic equation in space and time, such that the particle transport and collision effects are coupled, accumulated, and evaluated in a numerical time step scale. Consequently, the cell size and time step of DUGKS are not passively limited by the particle mean-free-path and relaxation time. As a result, the DUGKS can capture the flow behaviors in all regimes without resolving the kinetic scale. Particularly, with the variation of the ratio between numerical mesh size scale and kinetic mean free path scale, the DUGKS can serve as a self-adaptive multiscale method. The DUGKS has been successfully applied to a number of flow problems with multiple flow regimes. This paper presents a brief review of the progress of this method.


1993 ◽  
Vol 3 (7) ◽  
pp. 1649-1659
Author(s):  
Mohammad A. Tafreshi ◽  
Stefan Csillag ◽  
Zou Wei Yuan ◽  
Christian Bohm ◽  
Elisabeth Lefèvre ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document