scholarly journals A variant of raw observation approach for BDS/GNSS precise point positioning with fast integer ambiguity resolution

2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Qile Zhao ◽  
Jing Guo ◽  
Sijing Liu ◽  
Jun Tao ◽  
Zhigang Hu ◽  
...  

AbstractThe Precise Point Positioning (PPP) technique uses a single Global Navigation Satellite System (GNSS) receiver to collect carrier-phase and code observations and perform centimeter-accuracy positioning together with the precise satellite orbit and clock corrections provided. According to the observations used, there are basically two approaches, namely, the ionosphere-free combination approach and the raw observation approach. The former eliminates the ionosphere effects in the observation domain, while the latter estimates the ionosphere effects using uncombined and undifferenced observations, i.e., so-called raw observations. These traditional techniques do not fix carrier-phase ambiguities to integers, if the additional corrections of satellite hardware biases are not provided to the users. To derive the corrections of hardware biases in network side, the ionosphere-free combination operation is often used to obtain the ionosphere-free ambiguities from the L1 and L2 ones produced even with the raw observation approach in earlier studies. This contribution introduces a variant of the raw observation approach that does not use any ionosphere-free (or narrow-lane) combination operator to derive satellite hardware bias and compute PPP ambiguity float and fixed solution. The reparameterization and the manipulation of design matrix coefficients are described. A computational procedure is developed to derive the satellite hardware biases on WL and L1 directly. The PPP ambiguity-fixed solutions are obtained also directly with WL/L1 integer ambiguity resolutions. The proposed method is applied to process the data of a GNSS network covering a large part of China. We produce the satellite biases of BeiDou, GPS and Galileo. The results demonstrate that both accuracy and convergence are significantly improved with integer ambiguity resolution. The BeiDou contributions on accuracy and convergence are also assessed. It is disclosed for the first time that BeiDou only ambiguity-fixed solutions achieve the similar accuracy with that of GPS/Galileo combined, at least in mainland China. The numerical analysis demonstrates that the best solutions are achieved by GPS/Galileo/BeiDou solutions. The accuracy in horizontal components is better than 6 mm, and in the height component better than 20 mm (one sigma). The mean convergence time for reliable ambiguity-fixing is about 1.37 min with 0.12 min standard deviation among stations without using ionosphere corrections and the third frequency measurements. The contribution of BDS is numerically highlighted.

2015 ◽  
Vol 5 (1) ◽  
pp. 53-60 ◽  
Author(s):  
S. Nistor ◽  
A. S. Buda

Abstract Because of the dynamics of the GPS technique used in different domains like geodesy, near real-time GPS meteorology, geodynamics, the precise point positioning (PPP) becomes more than a powerful method for determining the position, or the delay caused by the atmosphere. The main idea of this method is that we need only one receiver – preferably that have dual frequencies pseudorange and carrier-phase capabilities – to obtain the position. Because we are using only one receiver the majority of the residuals that are eliminated in double differencing method, we have to estimate them in PPP. The development of the PPP method allows us, to use precise satellite clock estimates, and precise orbits, resulting in a much more efficient way to deal with the disadvantages of this technique, like slow convergence time, or ambiguity resolution. Because this two problem are correlated, to achieve fast convergence we need to resolve the problem of ambiguity resolution. But the accuracy of the PPP results are directly influenced by presence of the uncalibrated phase delays (UPD) originating in the receivers and satellites. In this article we present the GPS errors and biases, the zenith wet delay and the necessary time for obtaining the convergence. The necessary correction are downloaded by using the IGS service.


2013 ◽  
Vol 66 (3) ◽  
pp. 399-416 ◽  
Author(s):  
Altti Jokinen ◽  
Shaojun Feng ◽  
Wolfgang Schuster ◽  
Washington Ochieng ◽  
Chris Hide ◽  
...  

The Precise Point Positioning (PPP) concept enables centimetre-level positioning accuracy by employing one Global Navigation Satellite System (GNSS) receiver. The main advantage of PPP over conventional Real Time Kinematic (cRTK) methods is that a local reference network infrastructure is not required. Only a global reference network with approximately 50 stations is needed because reference GNSS data is required for generating precise error correction products for PPP. However, the current implementation of PPP is not suitable for some applications due to the long time period (i.e. convergence time of up to 60 minutes) required to obtain an accurate position solution. This paper presents a new method to reduce the time required for initial integer ambiguity resolution and to improve position accuracy. It is based on combining GPS and GLONASS measurements to calculate the float ambiguity positioning solution initially, followed by the resolution of GPS integer ambiguities.The results show that using the GPS/GLONASS float solution can, on average, reduce the time to initial GPS ambiguity resolution by approximately 5% compared to using the GPS float solution alone. In addition, average vertical and horizontal positioning errors at the initial ambiguity resolution epoch can be reduced by approximately 17% and 4%, respectively.


2017 ◽  
Vol 2017 ◽  
pp. 1-11
Author(s):  
Fei Liu ◽  
Yang Gao

With the availability of the third civil signal in the Global Positioning System, triple-frequency Precise Point Positioning ambiguity resolution methods have drawn increasing attention due to significantly reduced convergence time. However, the corresponding triple-frequency based precise clock products are not widely available and adopted by applications. Currently, most precise products are generated based on ionosphere-free combination of dual-frequency L1/L2 signals, which however are not consistent with the triple-frequency ionosphere-free carrier-phase measurements, resulting in inaccurate positioning and unstable float ambiguities. In this study, a GPS triple-frequency PPP ambiguity resolution method is developed using the widely used dual-frequency based clock products. In this method, the interfrequency clock biases between the triple-frequency and dual-frequency ionosphere-free carrier-phase measurements are first estimated and then applied to triple-frequency ionosphere-free carrier-phase measurements to obtain stable float ambiguities. After this, the wide-lane L2/L5 and wide-lane L1/L2 integer property of ambiguities are recovered by estimating the satellite fractional cycle biases. A test using a sparse network is conducted to verify the effectiveness of the method. The results show that the ambiguity resolution can be achieved in minutes even tens of seconds and the positioning accuracy is in decimeter level.


2018 ◽  
Vol 93 (7) ◽  
pp. 993-1010 ◽  
Author(s):  
Xiaohong Zhang ◽  
Feng Zhu ◽  
Yuxi Zhang ◽  
Freeshah Mohamed ◽  
Wuxing Zhou

2020 ◽  
Vol 12 (20) ◽  
pp. 3343
Author(s):  
Hongyang Ma ◽  
Qile Zhao ◽  
Sandra Verhagen ◽  
Dimitrios Psychas ◽  
Xianglin Liu

The benefits of an increased number of global navigation satellite systems (GNSS) in space have been confirmed for the robustness and convergence time of standard precise point positioning (PPP) solutions, as well as improved accuracy when (most of) the ambiguities are fixed. Yet, it is still worthwhile to investigate fast and high-precision GNSS parameter estimation to meet user needs. This contribution focuses on integer ambiguity resolution-enabled Precise Point Positioning (PPP-RTK) in the use of the observations from four global navigation systems, i.e., GPS (Global Positioning System), Galileo (European Global Navigation Satellite System), BDS (Chinese BeiDou Navigation Satellite System), and GLONASS (Global’naya Navigatsionnaya Sputnikova Sistema). An undifferenced and uncombined PPP-RTK model is implemented for which the satellite clock and phase bias corrections are computed from the data processing of a group of stations in a network and then provided to users to help them achieve integer ambiguity resolution on a single receiver by calibrating the satellite phase biases. The dataset is recorded in a local area of the GNSS network of the Netherlands, in which 12 stations are regarded as the reference to generate the corresponding corrections and 21 as the users to assess the performance of the multi-GNSS PPP-RTK in both kinematic and static positioning mode. The results show that the root-mean-square (RMS) errors of the ambiguity float solutions can achieve the same accuracy level of the ambiguity fixed solutions after convergence. The combined GNSS cases, on the contrary, reduce the horizontal RMS of GPS alone with 2 cm level to GPS + Galileo/GPS + Galileo + BDS/GPS + Galileo + BDS + GLONASS with 1 cm level. The convergence time benefits from both multi-GNSS and fixing ambiguities, and the performances of the ambiguity fixed solution are comparable to those of the multi-GNSS ambiguity float solutions. For instance, the convergence time of GPS alone ambiguity fixed solutions to achieve 10 cm three-dimensional (3D) positioning accuracy is 39.5 min, while it is 37 min for GPS + Galileo ambiguity float solutions; moreover, with the same criterion, the convergence time of GE ambiguity fixed solutions is 19 min, which is better than GPS + Galileo + BDS + GLONASS ambiguity float solutions with 28.5 min. The experiments indicate that GPS alone occasionally suffers from a wrong fixing problem; however, this problem does not exist in the combined systems. Finally, integer ambiguity resolution is still necessary for multi-GNSS in the case of fast achieving very-high-accuracy positioning, e.g., sub-centimeter level.


Sign in / Sign up

Export Citation Format

Share Document