scholarly journals Peer-led team learning for introductory biology: relationships between peer-leader relatability, perceived role model status, and the potential influences of these variables on student learning gains

Author(s):  
Christina I. Winterton ◽  
Ryan D. P. Dunk ◽  
Jason R. Wiles
2016 ◽  
Vol 15 (2) ◽  
pp. ar22 ◽  
Author(s):  
Emily R. Elliott ◽  
Robert D. Reason ◽  
Clark R. Coffman ◽  
Eric J. Gangloff ◽  
Jeffrey R. Raker ◽  
...  

Undergraduate introductory biology courses are changing based on our growing understanding of how students learn and rapid scientific advancement in the biological sciences. At Iowa State University, faculty instructors are transforming a second-semester large-enrollment introductory biology course to include active learning within the lecture setting. To support this change, we set up a faculty learning community (FLC) in which instructors develop new pedagogies, adapt active-learning strategies to large courses, discuss challenges and progress, critique and revise classroom interventions, and share materials. We present data on how the collaborative work of the FLC led to increased implementation of active-learning strategies and a concurrent improvement in student learning. Interestingly, student learning gains correlate with the percentage of classroom time spent in active-learning modes. Furthermore, student attitudes toward learning biology are weakly positively correlated with these learning gains. At our institution, the FLC framework serves as an agent of iterative emergent change, resulting in the creation of a more student-centered course that better supports learning.


2014 ◽  
Vol 13 (2) ◽  
pp. 311-321 ◽  
Author(s):  
Michelle Mynlieff ◽  
Anita L. Manogaran ◽  
Martin St. Maurice ◽  
Thomas J. Eddinger

Writing assignments, including note taking and written recall, should enhance retention of knowledge, whereas analytical writing tasks with metacognitive aspects should enhance higher-order thinking. In this study, we assessed how certain writing-intensive “interventions,” such as written exam corrections and peer-reviewed writing assignments using Calibrated Peer Review and including a metacognitive component, improve student learning. We designed and tested the possible benefits of these approaches using control and experimental variables across and between our three-section introductory biology course. Based on assessment, students who corrected exam questions showed significant improvement on postexam assessment compared with their nonparticipating peers. Differences were also observed between students participating in written and discussion-based exercises. Students with low ACT scores benefited equally from written and discussion-based exam corrections, whereas students with midrange to high ACT scores benefited more from written than discussion-based exam corrections. Students scored higher on topics learned via peer-reviewed writing assignments relative to learning in an active classroom discussion or traditional lecture. However, students with low ACT scores (17–23) did not show the same benefit from peer-reviewed written essays as the other students. These changes offer significant student learning benefits with minimal additional effort by the instructors.


2021 ◽  
Vol 5 (1) ◽  
pp. 39-52
Author(s):  
Jennifer A. Hamel ◽  
◽  
Hannah M. ter Hofstede ◽  
Adrienne Gauthier ◽  
David Lopatto ◽  
...  

The authors present student self-reported learning gains from two undergraduate courses that embed research within study abroad courses. Students in one course worked in small groups on original research projects; students in the second course collectively contributed to one ongoing, professional research project. Differences in student learning between courses raise questions about the relationship of course structures to high-impact practices.


2017 ◽  
Vol 46 (1) ◽  
pp. nse2017.02.0003
Author(s):  
Abby E. Neu ◽  
Marshall D. Stern ◽  
Krishona L. Martinson

2010 ◽  
Vol 9 (4) ◽  
pp. 473-481 ◽  
Author(s):  
Marin Moravec ◽  
Adrienne Williams ◽  
Nancy Aguilar-Roca ◽  
Diane K. O'Dowd

Actively engaging students in lecture has been shown to increase learning gains. To create time for active learning without displacing content we used two strategies for introducing material before class in a large introductory biology course. Four to five slides from 2007/8 were removed from each of three lectures in 2009 and the information introduced in preclass worksheets or narrated PowerPoint videos. In class, time created by shifting lecture material to learn before lecture (LBL) assignments was used to engage students in application of their new knowledge. Learning was evaluated by comparing student performance in 2009 versus 2007/8 on LBL-related question pairs, matched by level and format. The percentage of students who correctly answered five of six LBL-related exam questions was significantly higher (p < 0.001) in 2009 versus 2007/8. The mean increase in performance was 21% across the six LBL-related questions compared with <3% on all non-LBL exam questions. The worksheet and video LBL formats were equally effective based on a cross-over experimental design. These results demonstrate that LBLs combined with interactive exercises can be implemented incrementally and result in significant increases in learning gains in large introductory biology classes.


2005 ◽  
Vol 4 (4) ◽  
pp. 298-310 ◽  
Author(s):  
Jennifer K. Knight ◽  
William B. Wood

We carried out an experiment to determine whether student learning gains in a large, traditionally taught, upper-division lecture course in developmental biology could be increased by partially changing to a more interactive classroom format. In two successive semesters, we presented the same course syllabus using different teaching styles: in fall 2003, the traditional lecture format; and in spring 2004, decreased lecturing and addition of student participation and cooperative problem solving during class time, including frequent in-class assessment of understanding. We used performance on pretests and posttests, and on homework problems to estimate and compare student learning gains between the two semesters. Our results indicated significantly higher learning gains and better conceptual understanding in the more interactive course. To assess reproducibility of these effects, we repeated the interactive course in spring 2005 with similar results. Our findings parallel results of similar teaching-style comparisons made in other disciplines. On the basis of this evidence, we propose a general model for teaching large biology courses that incorporates interactive engagement and cooperative work in place of some lecturing, while retaining course content by demanding greater student responsibility for learning outside of class.


2012 ◽  
Vol 36 (4) ◽  
pp. 325-335 ◽  
Author(s):  
Douglas B. Luckie ◽  
Jacob R. Aubry ◽  
Benjamin J. Marengo ◽  
Aaron M. Rivkin ◽  
Lindsey A. Foos ◽  
...  

In this study, we compared gains in student content learning over a 10-yr period in which the introductory biology laboratory curriculum was changed in two ways: an increase of inquiry and a reduction of content. Three laboratory formats were tested: traditional 1-wk-long cookbook laboratories, two 7-wk-long inquiry laboratories, and one 14-wk-long inquiry laboratory. As the level of inquiry increased, student learning gains on content exams trended upward even while traditional content coverage taught decreased. In a quantitative assessment of content knowledge, students who participated in the 14-wk-long inquiry laboratory format outscored their peers in both 7- and 1-wk-long lab formats on Medical College Admissions Test exam questions (scores of 64.73%, 61.97%, and 53.48%, respectively, P < 0.01). In a qualitative study of student opinions, surveys conducted at the end of semesters where traditional 1-wk laboratories ( n = 167 students) were used had low response rates and predominately negative opinions (only 20% of responses were positive), whereas those who participated in 7-wk ( n = 543) or 14-wk ( n = 308) inquiry laboratories had high response rates and 71% and 96% positive reviews, respectively. In an assessment of traditional content coverage in courses, three indexes were averaged to calculate traditional forms of coverage and showed a decrease by 44% over the study period. We believe that the quantitative and qualitative data support greater student-driven inquiry in the classroom laboratory, which leads to deeper learning in fewer topic areas (less teaching) and can reap gains in scientific thinking and fundamental understanding applicable to a broader range of topic areas (more learning) in introductory biology.


2016 ◽  
Vol 42 (12) ◽  
pp. 2284-2300 ◽  
Author(s):  
Katrina Crotts Roohr ◽  
Huili Liu ◽  
Ou Lydia Liu

Sign in / Sign up

Export Citation Format

Share Document